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Abstract. In this talk we focus on the problem of model inconsistency 
management, an active field of research in model-driven software 
engineering. We focus on the activity of inconsistency resolution in 
particular. Automating the resolution of model inconsistencies turns out to 
be quite a challenge. We provide an overview of a number of research 
approaches to inconsistency resolution that have been proposed, discuss 
their limitations, and propose some novel research avenues in this 
important area of research. 
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ABSTRACT
Model driven development uses more and more complemen-
tary models. Indeed, large-scale industrial systems are cur-
rently developed by hundreds of developers working on hun-
dreds of models by different distributed teams. In such a
context, model inconsistency detection is gaining a lot of at-
tention as the overlap between all these models, which are
often maintained by different persons, are a common source
of inconsistencies. This paper proposes a method to detect
inconsistencies when models are scattered on different edit-
ing sites using partial replication. The method provides a
way to check the consistency of a single view against the
ones that are related to it regarding consistency. It relies
on Praxis, an operation based representation of models, to
determine what information needs to be collected for con-
sistency checking and the DPraxis protocol to find where it
can be.

Categories and Subject Descriptors
D.2 [Software Engineering]:

Keywords
Consistency, Model, View.

1. INTRODUCTION
Model driven development uses more and more complemen-
tary models. Indeed, large-scale industrial systems are cur-
rently developed by hundreds of developers working on hun-
dreds of models by different distributed teams [13]. In such
a context, model inconsistency detection is gaining a lot of
attention as the overlap between all these models, which
are often maintained by different persons and from different
perspectives, are a common source of inconsistency.

∗This work was founded by the French Weapon Agency
(DGA) and the MOVIDA ANR Project

Each software designer only partially contributes to the global
design. Only some of the global design’s model elements are
interesting to each software designer. In [5], authors de-
fine the notion of viewpoint for addressing this concern. A
viewpoint is defined by the knowledge, responsibilities and
understandings of some part of the system. Each software
designer has his own view of the global system to design. For
work efficiency reasons each view contains only the model el-
ements of the global design the designer is concerned with.
It should be noted that views do not provide a partitioning
of the global design as they have elements in common.

Views allow different software designers to concurrently ac-
cess elements of the global design. Since these concurrent
modifications are done from different point-of-views of the
global design, inconsistencies arise between and within the
views. View Consistency is then a key matter in software
engineering. In order to control the consistency of global de-
sign, consistency rules are defined and checked against the
global design. When an inconsistency is detected, it is re-
ported and logged for further resolving. Consistency checks
should be regularly done in order to make sure that the sep-
aration of concerns granted by the use of views does not
introduce inconsistencies due to the distribution of the in-
formation. Detection of inconsistencies between views is a
well known research domain (the interested reader will find
a precise description in [14, 4]). Many approaches have been
proposed in this domain [7, 5, 6, 3, 10, 8, 1] and many tools
are available for model consistency validation (Object Con-
straint Language checkers, Eclipse Model Framework vali-
dation tools, Epsilon Validation Language, Praxis . . . ), but
except [10] they have all been proposed on single machine
architectures and don’t cover how to perform inconsistency
detection in a distributed environment. The actual chal-
lenges of modeling concerns huge systems that are modeled
by distant teams, in a distributed fashion, assuming possible
disconnections and delays between the designing sites, is not
answered by the state of the art.

A designer can produce, modify or delete model elements
that belong to his view. During the execution of the de-
velopment process, designers will collaborate. Hence, they
will need to access model elements on other sites. Once a
designer has accessed model elements from any other view,
these model elements can be incorporated to his view as he
now relies on it. Also, a designer’s view always remains par-
tial for sake of the separation of concerns. Respecting the
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separation of concern principle inevitably leads to inconsis-
tency between the different views. Inconsistencies need to
be detected as soon as possible to avoid project failures. In
this article, we address the problem of inconsistency detec-
tion when the views are distributed. More precisely, we want
to tackle with this problem when each designer’s site only
holds the designer’s view. The focus of this work is then to
provide a method for detecting single-view inconsistencies,
that are all the inconsistencies related to a particular view.
In other words, we want to provide a method that only de-
tect inconsistencies that the view’s designer can understand
and resolve.

We identified two problems that need to be tackled regard-
ing single-view inconsistency detection. The first one is to
be able to identify the needed information from other views.
This point is handled in section 2. The second lock con-
cerns the problem of finding in which view the interesting
information is, which is dealt with in section 3.

2. WHAT TO GET
If no information is available about what kind of data is
relevant to each inconsistency rule, the consistency check of
a single view will need to download the entirety of the related
views; and possibly the entirety of the views related to the
related views, which can quickly end-up in downloading the
entire design. The gathering of such a wasteful amount of
data can be avoided using filters that can be deduced from
the consistency rules’ code.

In this section we briefly revisit the three elements from
our previous work [1, 9, 2] on which we rely to determine
which parts of a model are useful for checking a particular
rule. These three elements are the Praxis model construction
that is the model representation used in our approach, the
Praxis inconsistency rule formalism that is used for the rep-
resentation of inconsistency rules and the consistency impact
matrix which is the data-structure used by the single-view
inconsistency checker to determine the needed information
for each inconsistency rule.

2.1 Praxis Model Construction
We propose a formalism to represent models as sequences
of unitary editing operations [1, 9]. This formalism, named
Praxis, is used to represent any model as well as any set
of model changes. It represents models using six unitary
operations that are revisited here:

– create(me,mc) creates a model element me instance of
the meta-class mc.

– delete(me) deletes the model element me. A deleted ele-
ment does not have properties, nor references.

– addProperty(me, p, v) assigns the value v to the property
p of the model element me.

– remProperty(me, p, v) removes the value v of the property
p for the model element me.

– addReference(me, r,met) assigns a target model element
met to the reference r for the model element me.

– remReference(me, r,met) removes the target model ele-
ment met of the reference r for the model element me.

Figure 1: Sample UML model

1 create(C1,class)
2 addProperty(C1,name, ’TOTO’)
3 addProperty(C1,visibility, ’private’)
4 addProperty(C1,isabstract, ’false’)
5 create(P1,property)
6 addProperty(P1, name, ’Alice’)
7 addProperty(P1, visibility, ’public’)
8 addReference(C1, attribute, P1)
9 addReference(C1, ownedElement, P1)
10 addReference(P1, class, C1)
11 addReference(P1, namespace, C1)

Figure 2: Praxis illustrative operation sequence

Figure 2 is a simplified Praxis construction sequence σc

used to produce the model of Figure 1 that consists of a
private UML class named TOTO which owns a public at-
tribute Alice. The diagram comes from the Eclipse UML2
Tools Editor that does not display visibilities.

2.2 Inconsistency detection rules
In Praxis, an inconsistency rule is a logic formula over the
sequence of model editing operations (interested readers can
refer to [1] for a more detailed description of the rules’ for-
malism). In these rules the following predicates are used to
access model editing operations within a sequence:

– lastCreate(id,MetaClass) is used to fetch within the se-
quence, the operations that create model elements. The
’last’ prefix of this logic constructor means that the element
is never deleted further in the sequence.

– lastAddReference(id,MetaReference, Target) is used to
fetch within the sequence, the operations that did assign
to a source model element (id), one value (Target) for the
reference (MetaReference). The ’last’ prefix of this logic
constructor means that this reference value is not removed
further in the sequence (with the remReference or delete
operation).

– lastAddProperty(id,MetaProperty, V alue) is used to fetch
within the sequence, the operations that did assign to a
source model element (id), one value (V alue) for its prop-
erty MetaProperty. The ’last’ prefix of this logic constructor
means that the value is not removed further in the sequence.

Let us illustrate inconsistency rules with two examples that
are defined in the class diagram part of the UML 2.1 speci-
fication [11]:

The Ownership rule specifies that: An element may not
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directly or indirectly own itself.

The Visibility rule specifies that: An element that has
a public visibility can only be in a namespace with a public
visibility.

These two rules cover two typical aspects of inconsistency
detection. The rule Ownership (figure 4), specifies that con-
tainments should not cycle, which is quite complex to check
because containments relationships are spread over the en-
tire design. The rule Visibility (figure 3) on the contrary,
is less complex, and has its locality restricted to each names-
pace.

V isibility ⇐⇒ {∃ Me, N1 ·
lastAddProperty(Me, visibility, “public′′) ∧
lastAddReference(Me, namespace,N1) ∧
lastAddProperty(N1, visibility, V ) ∧ not(V = “public′′).

Figure 3: Visibility rule for Praxis

Ownership ⇐⇒ {∃ X ·Owns(X,X)} With
Owns(A,B) ⇐⇒ {
lastAddReference(A, ownedElement,B) ∨ {∃ Y ·
lastAddReference(A, ownedElement, Y ) ∧Owns(Y,B)}}

Figure 4: Ownership rule for Praxis

To illustrate Praxis rules, we present the Praxis version of
rule Visibility and Ownership in figure 3 and 4. The Vis-

ibility rule has two variables (Me,N1) that both corre-
spond to identifiers of UML elements. This rule matches any
Praxis model construction sequence that results in a model
containing an element with a public visibility for which its
namespace is not public. The sequence presented in Fig-
ure 2 corresponds to an inconsistent model regarding this
rule. Launching an inconsistency detection on this sequence
would detect the inconsistency Visibility(P1,C1).

2.3 Consistency Impact Matrix
The effect that editing operations may have on inconsistency
rules can be described in a two dimensional boolean matrix
we called impact matrix [2]. This matrix was designed for
incremental inconsistency detection. Its rows correspond to
Praxis operations and its columns to the inconsistency rules.
A ’true’ in a cell of such matrix means that the correspond-
ing editing operation may have an effect on the correspond-
ing inconsistency rule. When an editing operation appears
in a model change (a model change is also a sequence of uni-
tary operations), the inconsistency rules marked as ’true’ in
the matrix for these operations have to be re-checked. In
our context this matrix can be used to know which informa-
tion needs to be downloaded from the other views to check
a particular rule.

As there is an infinity of possible editing operations (infinity
of possible parameter’s values), we group them in equiva-
lence classes to bound the matrix’s size. We defined four
rules to partition the editing operations for any metamodel.
Two editing operations are equivalent if (1) they create a
model element instance of the same meta-class, (2) they

change a reference for the same meta-reference, (3) they
change values for the same meta-property, (4) they delete
a model element. Thanks to such a partition, the number
of equivalence classes is bound to the number of the meta-
classes, plus the number of the references, plus the number of
properties, plus one (the equivalent class corresponding to
the deletion).The impact matrix is automatically derived
from the metamodel and the inconsistency rules [2].

Equivalence class OwnedElement Visibility
CClass false false
CAttribute false false
SPName false false
SPV isibility false true
SROwnedElement true false
SRClass false false
SRAttribute false false
SRNamespace false true
Delete false false

Figure 5: Extract of the Impact matrix for
the illustrative inconsistency rules (C=Create,
SP=PropertyChange, SR=ReferenceChange)

An extract of the impact matrix for the illustrative incon-
sistency rules we previously introduced is shown in figure 5.
The extract shows nine equivalence classes from the meta-
model partition, of which only three have an effect on an
inconsistency rule. In this matrix, regarding the Visibil-

ity inconsistency rule, the operation classes that may have
an impact on this rule are SPV isibility and SRNamesapce.
The operations that may have an impact on this rule are
those that modify a reference to the namespace of an ele-
ment, which all belong to the operation class SRNamespace,
and those that modify the visibility of an element, which
all belong to SPV isibility. Note that the Delete equivalence
class has no impact because deletion occurs only for model
elements that are not referenced and do not reference other
model elements.

Our method for single-view consistency detection uses the
impact matrix that was originally intended for incremental
inconsistency detection [2]. For checking a particular ruleset,
only operations members of the operation classes that have
an impact on an inconsistency rules are relevant. Knowing
which operation classes are interesting reduces the amount
of data that needs to be considered to the relevant part of
the views.

3. WHERE TO FETCH
Having the information about what classes of operations are
useful for checking a particular rule is not enough in prac-
tice. It does not tackle the problem of gathering data that
is actually related to the view for which we want to check
the consistency. Indeed, the interesting information is scat-
tered among the views, and not all of the information that
belongs to the identified operation classes is interesting to
the view’s designer. In this section we describe how we use
group of interest tables from peer-to-peer model editing en-
gines to identify where in the net of views is the information
to consider for inconsistency detection.
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3.1 DPraxis Partial Replication Model
Partial replications allows each model designer to restrict
his workspace to its strict minimum: his view. The over-
laps between the views are maintained up-to-date thanks to
a complex background update protocol. We defined such
a protocol, named DPraxis, for distributed model editing
tools [9]. DPraxis is a peer-to-peer fully distributed model
update protocol that is designed to maintain the related
views of a model up-to-date without having to replicate the
entirety of its content in each designer’s workspace. In this
section we revisit the use of this protocol, which is used by
the method for single-view inconsistency detection.

In distributed systems using replication, replicated elements
are called replicas [12]. A replica is accessed in the same way
as a regular element, but it can be modified by the propaga-
tion of modifications issued from other sites. The replication
is handled thanks to interest groups that are used to know
which sites are interested in which information. Depending
on the replication protocol and the data that needs to be
replicated, the size and the nature of the replication unit
can vary. An interest group links one replication unit to the
sites that have it.

DPraxis uses the model element as the replication unit. Con-
sequently, views contain replicas for the parts that overlap
with at least one other view, and model elements that are
proper to the view. The use of the model element as the
replication unit allows to fine tune the parts of the model a
designer want to import in his view. As DPraxis does not
allow dangling links, reference between elements are shared
between views only if both the source and the target of a
reference are in the site’s view. This allows to choose the
perimeter of the view by not importing elements pointed by
unwanted references.

The DPraxis protocol maintains a table with routing infor-
mation on each site to propagate changes to the interested
sites. Thanks to this table it is possible to know which ele-
ments are replicas, and to know, for each replica, on which
site it is replicated. This two informations are exploited by
the single-view inconsistency detection method to contact
other views when checking consistency.

3.2 Single-view consistency detection
The following method focuses on the use of partial repli-
cation. Nevertheless, the method described here for single-
view inconsistency detection could be used in centralized
architectures as well. We describe in this section how to
check one inconsistency rule for one view, plus the elements
of other views that are related to the considered view re-
garding the rule to check.

3.2.1 Determining Jump Points
The intent of single view inconsistency detection is to simu-
late an inconsistency check where the detection engine can
jump from the original view to the related ones. To achieve
this goal we propose to begin with the identification of what
we call Jump Points. A jump point is a replicated model el-
ement from which the inconsistency detection engine would

want to continue its work in an other view. They corre-
spond to elements for which the local view only has a partial
knowledge and where it is necessary to jump to other views
to complete this knowledge. Inconsistency rules navigate
through the model thanks to references, which can point to
other views elements that are not replicated locally. The
first step of single view inconsistency detection is then to
find these local elements that may point to model elements
that are not known locally, and may be the source of incon-
sistencies.

Definition 1. Jump Point: An inconsistency rule’s jump
point is a model element which is the source (res. the target)
of a reference that points to an element outside of the local
view and that can be navigated by the inconsistency rule.

In Praxis, references are accessed using the logical predicate
lastAddReference(source, reference, target). The Im-
pact matrix presented previously can be used to know which
references can be crossed by an inconsistency rules. These
references correspond to true in the matrix for operation
classes of type SRreference. For instance the rule V isibility
only navigates through relations of the class SRNamespace.
In DPraxis, replicas are maintained up-to-date thanks to in-
terest group tables that can be used to know which elements
are replicated, and where.

In practice we determine the jump points following this pro-
cedure:

1. Determine the references that can be crossed by the
inconsistency rule by looking for true in the Impact

Matrix for classes of operations that correspond to ref-
erences.

2. Determine which elements are replicas using the group
of interest table.

3. Confront the two informations to find all the repli-
cas for which there is a locally crossable reference.
These elements will be considered as the only inter-
esting Jump Points.

It is difficult in practice to determine all the possible Jump
Points using DPraxis because references in the view can only
target elements of the view — if a reference is interesting to
one view, then its target has to be imported. Therefore,
there can be references of replicas that are not known to the
local view. We chose to ignore such jump points because in
DPraxis the user decides whether the target (res. source) of
a replicated element is interesting or not. It is then reason-
able to hide inconsistencies for which the user clearly stated
that the reference was not relevant to him/her. We only
consider as a jump point elements for which there is at least
one reference of the considered type locally. Nevertheless
the Jump points we ignore could be capture by looking out
in the meta-model if the replica’s type can admit crossable
references.

5



3.2.2 Simulating Jumps
The next step of the single-view inconsistency method is to
allow inconsistency rules to follow jump points’ references
to other views. We chose to download data of other views
locally for simulating the jumps. This choice allows to use a
regular inconsistency detection engine to do the single-view
inconsistency detection. Not all the information from the
distant view is to be downloaded. First, only information
that is interesting to the considered rule matters, which is
specified in the Impact matrix. Second, only elements that
are linked to the jump point need to be downloaded.
The gathering of the unitary actions for realizing the single-
view inconsistency detection can be done this way:

1. Determine Jump points following the previous proce-
dure.

2. Contact all the sites that have a replica of a jump
point for the considered rule. Ask them to send all
the unitary operations that are interesting for this rule
plus the operations that are necessary to fulfill their
preconditions. Wait for the answer.

3. Contacted sites then recursively apply the two previous
steps of the procedure as long as new jump points are
discovered. Then they send back to the caller all the
gathered data.

The implementation of the procedure is detailed in section
4. At the end of this procedure the calling site has gath-
ered all the information that is interesting to the rule from
the other views, and that is linked to its jump points. An
inconsistency detection on the view plus the gathered data
implements a single-view inconsistency detection: It detects
the local inconsistencies, plus the inconsistencies that are
due to the overlapping parts of the views.

3.3 Example
In this section we present an illustrative example of the
single-view inconsistency detection.

In figure 6 is shown three sequences corresponding to three
different views, where each of the views is consistent, but
together make a cycle for the ownedElement relationship.
The number correspond to a total ordering of the actions
that is granted by D-Praxis.

Let us consider a single-view inconsistency detection for
View One regarding the Ownership inconsistency rule.

The first step is to determine the jump points: P1 and P2
are replicas (they are in the routing table from figure 7).
From the Impact Matrix in figure 5 we can deduce that
this rule can only cross references from the operation class
SROwnedElement. There is a local OwnedElement reference
in the view that both concerns P1 and P2, thus the jump
points for this view and for the rule Ownership are P1 and
P2.

The simulation of the jump needs to contact View two con-
cerning P2 and View three concerning P1. The following
requests are sent in order to gather the data without cycling
indefinitely:

View One
1 create(P1,package)
2 addProperty(P1,name, ’A’)
3 create(P2,package)
4 addProperty(P2, name, ’B’)
5 addReference(P1, ownedElement, P2)
6 addReference(P2, namespace, P1)

View Two
3 create(P2,package)
4 addProperty(P2, name, ’B’)
7 create(P3,package)
8 addProperty(P3,name, ’C’)
9 addReference(P2, ownedElement, P3)
10 addReference(P3, namespace, P2)

View Three
1 create(P1,package)
2 addProperty(P1,name, ’A’)
7 create(P3,package)
8 addProperty(P3,name, ’C’)
11 addReference(P3, ownedElement, P1)
12 addReference(P1, namespace, P3)

Figure 6: Three distributed views

P1-> View One, View Three
P2-> View One, View Two
P3-> View Two, View Three

Figure 7: Simplified routing table

• Request from View one to View two: All actions in
SROwnedElement regarding P2, P1, plus dependencies.

– Identified operations: 9:addReference(P2, owned-

Element, P3).

– Dependencies: 7:create(P3,package).

– Recursive Call from View two to View three: P3
is identified as a new jumping point. Requesting
all actions in SROwnedElement regarding P1, P2, P3,
plus dependencies.

∗ Identified operation: 11:addReference(P3,

ownedElement, P1)

∗ Dependencies: None. P3 and P1 are known
to the caller.

∗ Recursive Call: None, no new jump point dis-
covered.

– Returned operations: 7:create(P3,package); 9:ad-

dReference(P2, ownedElement, P3); 11:addRef-

erence(P3, ownedElement, P1).

• Request from View one to View three is symmetric to
the previous one, it returns the same operations.

At the end of the procedure, the view one has gathered:
7 create(P3,package)
9 addReference(P2, ownedElement, P3)
11 addReference(P3, ownedElement, P1)

Using both the local and the distant operations, the inconsis-
tency detection engine will detect an inconsistency for the
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rule Ownership, indeed P1, P2, P3 are in a cycle for the
relation OwnedElement. The procedure only gathers the
minimal information that matters to the rule, and that has
a link to the local data. The designer of view one is now
aware of the cycle problem and can contact the designers
responsible for the two other implicated views to resolve the
problem.

3.4 Limitations
The method described here is based on the fact that incon-
sistency rules navigate through models using the relations
between model elements. This condition does not hold in
general, for instance a rule that counts elements of a partic-
ular type may not use references for the navigation. Rules
that do not use navigation must be checked by gathering all
the interesting operations from all the other views.

4. VALIDATION
We implemented the method in our inconsistency detection
tool 1 that runs on top of Eclipse. The implementation adds
one optimization to the described procedure. We imple-
mented a hashing system to avoid to constantly download
the same operations over and over: A hash of the known
operations for each operation class is sent prior to the pro-
cedure, if the hashes matches, the procedure does not con-
tinue.

5. RELATED WORK
The naive method to tackle with distributed views consis-
tency consists in downloading all the views on a central
repository and then perform the inconsistency detection on
the re-united global design [10]. This technique is accept-
able when the latency of the technique is not an issue, or
when the consistency of the entire design needs to be assed.
Nevertheless, it does not scale to large designs regarding
answer speed because: First, downloading all the views on
one central place is slow if the views are large. Second,
the merge of all the distant view into one big model is not
easy. To address this problem this paper introduces the
notion of single-view inconsistency detection, which detects
distributed inconsistencies in a light-weight fashion.

Unfortunately we could not find many research approaches
that address the problem of inconsistency detection in dis-
tributed model. However, this general problem is not new,
traceability maintenance systems in distributed developing
environment that can manage dependencies and ensure trace-
ability between documents were developed in a quite central-
ized fashion [7]. The consistency in this tool was managed
at a code and documentation level, plus a monitor system
was available for user defined dependency needs.

6. CONCLUSION
This paper presents the notion of single-view inconsistency
detection. This method aims at detecting distributed in-
consistencies in a light-weight fashion by only reasoning on
elements that are relevent for both the considered inconsis-
tency rules and the considered view. The method is based
on the notion of inconsistency rules’ jump point which is
computed thanks to two of our previous contributions [1, 9].

1http://meta.lip6.fr

The next step of this work is a quantitative evaluation of
the method to asses its performances both empirically and
theoretically.
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ABSTRACT
Various approaches have been explored to detect and resolve
software model inconsistencies in a generic and scalable way.
In this position paper, we outline our research that aims to
use the technique of automated planning for the purpose of
resolving model inconsistencies. We discuss the scalability
results of the approach obtained through several stress-tests
and we propose several alternatives to the automated plan-
ning approach.

Keywords
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1. INTRODUCTION
In model-driven software engineering (MDE) [24,26], model
inconsistencies inevitably arise, because a (software) system
description is composed of a wide variety of diverse mod-
els, some of which are developed and maintained in parallel,
and most of which are subject to continuous evolution. Our
research focuses on the resolution of inconsistencies. The
inconsistency resolution activity is divided into the follow-
ing steps: (1) Select the inconsistencies that need to be re-
solved; (2) Identify possible resolution plans to resolve the
selected inconsistencies; (3) Perform a cost-benefit analysis
of the implementation of each of these resolution plans; (4)
Select and apply resolution actions, based on the previous
choices [25]. We focus on how to automate step (2) of the
inconsistency resolution activity: identification of possible
resolution plans. To do this, we propose to use the Au-
tomated Planning technique from the Artificial Intelligence
domain.

In this article we give an overview of different automated
planning techniques (Section 3). Based on a simple case
study (Section 4.1) we present an approach using a forward-
chaining heuristic planner to resolve inconsistencies (Sec-
tion 4.2). One of our requirements is that the time required
for resolving inconsistencies has to be sufficiently small so
as not to disturb the designer in his/her work. Therefore,
we investigate the scalability of the approach to larger soft-
ware models (Section 4.3). Based on these results we discuss
ways to improve the scalability of the proposed technique
(Section 4.4). We also discuss alternatives to automated
planning that may be more appropriate (Section 5).

2. PROBLEM STATEMENT
State-of-the-art approaches on inconsistency resolution ex-
hibit several problems. In [18], resolution rules are specified
manually, which is an error-prone process. Automatic gen-
eration of inconsistency resolution actions would resolve this
problem. This is what is done by Nentwich et al. [19], by gen-
erating resolution actions automatically from the inconsis-
tency detection rules. The execution of these rules, however,
only resolves one inconsistency at a time. As recognised by
the authors, this may cause problems when inconsistencies
and their resolution are interdependent [17]. An additional
problem is the interaction of the resolutions with the syntac-
tical constraints imposed by the modelling language. Xiong
et al. [28] define a language in which it is possible to spec-
ify the inconsistency rule and the possibilities to resolve the
inconsistencies. This requires inconsistency rules to be an-
notated with resolution information. Almeida da Silva et
al. [1] propose an approach to generate resolution plans for
inconsistent models. The approach is based on the exten-
sion of inconsistency detection rules with information about
the causes of the inconsistency, and on the use of genera-
tor functions, which are manually written and are used to
generate resolution actions. Instead of explicitly defining or
generating resolution rules, a set of models satisfying a set
of consistency rules can be generated and presented to the
user. Egyed et al. [6] define such an approach for resolv-
ing inconsistencies in UML models. Given an inconsistency
and using choice generation functions, possible resolution
choices, i.e., possible consistent models, are generated. The
choice generation functions are dependent on the modelling
language, i.e., they take into account the syntactical con-
straints of the modelling language and they only consider
the impact of one consistency rule at a time. Furthermore
these choice generation functions need to be implemented
manually.

Our aim is to tackle the problem of inconsistency resolution
by generating possible resolution plans without the need of
manually writing resolution rules or writing any procedures
that generate choices. The approach needs to generate valid
models with respect to the modelling language and needs to
enable the resolution of multiple inconsistencies at once and
to perform the resolution in a reasonable time. In addition,
the approach needs to be generic, i.e. it needs to be easy to
apply it to different modelling languages. In this article we
investigate the use of Automated Planning for this purpose.
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3. PLANNING TECHNIQUES
Automated planning is a technique coming from artificial
intelligence research. It aims to create plans, which are se-
quences of primitive actions that lead from an initial state
to a state meeting a specific predefined goal. To accomplish
this, the planner decomposes the world into logical condi-
tions and represents a state as a conjunction of literals. As
input the planner needs a planning environment, composed
of an initial state, a desired goal and a set of primitive ac-
tions that can be performed. The initial state represents
the current state of the world. The goal is a partially spec-
ified state that describes the world that we would like to
obtain. The actions express how each element of a state can
be changed. The actions are composed of a precondition and
an effect. The effect of an action is executed if and only if
the precondition is satisfied.

Classical planning is an automated planning subset that aim
to find a sequence of actions that reaches a desired state
in a finite, static, deterministic and fully observable world.
In general a planning approach consists of a representation
language used to describe the problem and an algorithm
representing the mechanism to solve the problem.

Fikes et al [7] developed, in 1971, a formal planning repre-
sentation language called STRIPS (STanford Research In-
stitute Problem Solver). In 1989, Pednault [21] developed
a more advanced and expressive language called ADL (Ac-
tion Description Language, not to be confused with Archi-
tecture Description Language). ADL has an improved ex-
pressiveness compared to STRIPS. In particular, ADL ap-
plies the open world principle: unspecified literals are con-
sidered as unknown instead of being assumed false. ADL
also allows to use negative literals and disjunction, whereas
STRIPS only allows positive literals and conjunctions. In
recent years a standard PDDL (Planning Domain Defini-
tion Language) [10] has been developed for the International
Planning Competition (IPC) of the International Conference
on Artificial Intelligence Planning and Scheduling (ICAPS).
PDDL is a generic language allowing to represent the syntax
of STRIPS, ADL and other languages. Even if PDDL cov-
ers all the functionalities of these languages, the majority of
planners only implement the STRIPS subset [14]. The most
recent version of PDDL is version 3.0 [9]. This language
is used in the competition to compare the benchmarks of
different planning approaches [23].

Two main approaches exist to solve classical planning prob-
lems [14]: (1) translating the planning problem into a prob-
lem that can be solved by a different approach (e.g. a
boolean satisfiability problem, a constraint satisfaction prob-
lem, or a model checking problem); (2) generating a search
space (which can be either a state space, a plan space, or a
planning graph) and looking for a solution plan in this space.
We will focus on this second approach only. Depending on
the direction in which the state space is traversed to look
for a solution, we can distinguish between:

Progression planning is a forward search that starts in the
initial state and tries to find a sequence of actions that
reaches a goal state. The problem of this algorithm is that it
does not exclude irrelevant actions. An action is considered
relevant if it can achieve the goal or one of the conjuncts of

the goal.

Regression planning is a backward state-space search that
starts in the goal state and searches a sequence of actions
that reach the initial state. This algorithm avoids the prob-
lems of the previous one by working only with relevant ac-
tions. The problem of this algorithm is that it is not always
obvious to find a possible predecessor of an action.

Another distinction can be made between total-order and
partial-order planning. With the former approach, the set
of actions that composes the strategy found by the algo-
rithm is strictly linear and ordered from the initial state to
the goal. This category of algorithms cannot execute dif-
ferent actions simultaneously and cannot take advantage of
the subdivision of a goal. Instead, partial-order planning
(POP) explores the plan-space without committing to a to-
tally ordered sequence of actions. POP works back from the
goal to the initial state and it can place two actions into a
strategy without specifying which comes first. As a result,
these actions can be executed in parallel and their order is
unimportant because they achieve different sub-divisions of
the goal [22, 23]. Neither total-order nor partial-order is ef-
ficient without a good heuristic function that estimates the
distance from a state to the goal.

Many planners exist that implement some variant of a plan-
ner algorithm. In this article we use the heuristic state-space
progression planner called FF (for “Fast-Forward Planning
System” [12, 13]). It is considered by [23] as the “The most
successful state-space searcher”, and was awarded for Out-
standing Performance at the AIPS 2000 planning competi-
tion and Top Performer at the AIPS 2002 planning compe-
tition. FF has been chosen not only because of its perfor-
mance, but also because it uses PDDL language with full
ADL subset support, including positive and negative liter-
als, conjunction and disjunction, negation, typing, and logic
quantification in the desired goal. This is crucial to our
approach, as will be explained in the next section.

4. AUTOMATED PLANNING IN ACTION
4.1 Case Study
Design models can be of different types (e.g. UML, Petri
nets, feature models, business process models). In this arti-
cle we restrict ourselves to UML class diagrams [20]. They
can suffer from many kinds of inconsistencies, such as struc-
tural and behavioural inconsistencies. Figure 1 illustrates a
simple class diagram containing two structural inconsistency
occurrences of type “inherited cyclic composition” and two
occurrences of type “cyclic inheritance” [27].

An inherited cyclic composition inconsistency arises when
a composition relationship and an inheritance chain form a
cycle that would produce an infinite containment of objects
upon instantiation. Both occurrences, ICC1 and ICC2, of
this inconsistency in Figure 1 arise with the same composi-
tion relationship, between Vehicle and Amphibious Vehi-

cle, but with different inheritance chains. The first occur-
rence ICC1 appears in the inheritance chain Vehicle← Boat

← Amphibious Vehicle. The second inconsistency ICC2 oc-
curs in the inheritance chain Vehicle← Car← Amphibious

Vehicle. A cyclic inheritance inconsistency arises when an
inheritance chain forms a cycle. Figure 1 has two occur-
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Vehicle

Bicycle CarMotorcycle BoatAircraft

Amphibious 
Vehicle 1..*

Helicopter Airplane

Figure 1: Class diagram with 4 inconsistency occurrences,
inspired by [27].

rences CI1 and CI2 of this type of inconsistency. The first
occurrence CI1 forms an inheritance cycle that involves the
classes Vehicle, Boat and Amphibious Vehicle. The sec-
ond occurrence CI2 forms an inheritance cycle that involves
the classes Vehicle, Car and Amphibious Vehicle.

All four aforementioned inconsistency occurrences share two
of the three classes that compose their respective inheri-
tance chains: Vehicle and Amphibious Vehicle. Because
of this overlap, it is possible to resolve more than one incon-
sistency occurrence with the same resolution action. For ex-
ample, removing the composition relationship between Ve-

hicle and Amphibious Vehicle solves the two inconsistency
occurrences ICC1 and ICC2. Removing the inheritance rela-
tionship between Boat and Amphibious Vehicle solves the
two inconsistency occurrences ICC1 and CI1. This clearly
illustrates that, in order to resolve model inconsistencies in
an optimal way, it is important to consider all inconsisten-
cies simultaneously. In [17, 18], the impact of dependen-
cies between model inconsistencies and their resolution ac-
tions were studied using the notion of critical pair analysis
of graph transformation rules.

4.2 Planning for Inconsistency Resolution
Using the example of Figure 1, we illustrate how to cre-
ate a sequence of inconsistency resolution actions with au-
tomated planning. We require as input an initial state (the
inconsistent model), a set of possible actions (that change
the model) and a desired goal (the consistent model). Plan-
ning requires logic conditions as input, so the whole model
environment (e.g. model, meta-model, detection rules) is
translated into a conjunction of logic literals. The syntax of
PDDL is Lisp-like. Each logic literal is a tuple represented
between parentheses. The tuple starts with the name of
the literal, followed by pairs of variable names and their
type (separated by a “–”). There are no primitive types in
PDDL. More information about the PDDL syntax can be
found in [8].

The initial state is expressed as a conjunction of literals,
and represents the current world. In our case the initial state
will be the inconsistent model. We can choose between three
different representations of this initial state: (1) using the
complete model; (2) using a partial model that contains only
those elements that are involved in one or more inconsistency
occurrences; (3) using a partial model that contains only
those elements that are involved in a single inconsistency
occurrence. We exclude option (3) as it only allows us to
solve one inconsistency at a time, and it does not take into

account any dependency between inconsistency occurrences
or their resolution actions.

The metamodel for our class diagram is given below using
PDDL syntax. Each metamodel element is represented by
a unique id through which it can be referred.

(Class ?id - class_id ?name - String)
(Generalisation ?id - g_id ?label - String

?child_class - class_id ?parent_class - class_id)
(Association_End ?id - ae_id ?class - class_id ?role - String

?upper_mult - Cardinal ?lower_mult - Cardinal
?composite - Boolean)

(Association ?id - a_id ?name - String ?ass_end_1 - ae_id
?ass_end_2 - ae_id)

A partial model conforming to this metamodel is given be-
low. It contains only the elements that are involved in the
inconsistency occurrences. This is illustrated by the shaded
part of Figure 1.

(Class c1 Vehicle)
(Class c5 Boat)
(Class c6 Car)
(Class c9 Amphibious_Vehicle)
(Generalisation g4 label4 c5 c1)
(Generalisation g5 label5 c6 c1)
(Generalisation g8 label8 c9 c5)
(Generalisation g9 label9 c9 c6)
(Generalisation g10 label10 c1 c9)
(Association_End ae1 c9 role1 star one non)
(Association_End ae2 c1 role2 one one yes)
(Association a1 ass1 ae1 ae2)

The set of actions that can be performed to change a model
are represented in terms of a precondition that must hold
before the execution and the action to execute. In our ap-
proach, inspired by [2], the set of actions corresponds to the
elementary operations (basically, create, modify and delete)
of the different types of model elements that can be derived
from the metamodel. These elementary operations, com-
bined with the logic literals of the metamodel, allow us to
compute the list of all possible actions. As an example, the
specification of modify_Association_Name is given below.

(:action modify_Association_Name
:parameters (?id - id ?name - String ?ass_end_1 - ae_id

?ass_end_2 - ae_id ?new_name - String)
:precondition (Association ?id ?name ?ass_end_1 ?ass_end_2)
:effect (when (not (= ?name ?new_name))

(and (not (Association ?id ?name ?ass_end_1 ?ass_end_2))
(Association ?id ?new_name ?ass_end_1 ?ass_end_2)))

)

The desired goal is a partially specified state, represented
as a conjunction of literals using logic quantification. It spec-
ifies the objective that we want to reach, namely a consistent
model. To represent this consistent model we can use two
alternatives: (1) the negation of the inconsistency detection
rules; (2) or the negation of the inconsistency occurrences.
An inconsistency detection rule is a conjunction of literals
representing a pattern that, if matched in the model, detects
inconsistency occurrences.

The inherited cyclic composition inconsistency detection rule
using the PDDL syntax is given bellow. Observe that it only
specifies an inheritance chain involving three classes. PDDL
syntax does not allow to express transitive closure to make
the rule more generic.

(exists (?a - class_id ?b - class_id ?c - class_id)
(and

(exists (?g - g_id ?Label - g_label)
(Generalisation ?g ?Label ?c ?a))

(exists (?g - g_id ?Label - g_label)
(Generalisation ?g ?Label ?b ?c))

10



(exists (?ae - ae_id ?role - ae_role
?upper - upper_cardinal ?lower - lower_cardinal)

(Association_End ?ae ?a ?role ?upper ?lower yes))
(exists (?ae - ae_id ?role - ae_role

?upper - upper_cardinal ?composite - boolean)
(Association_End ?ae ?b ?role ?upper one_l ?composite))

))

The advantage of using alternative (1) above is that it can
be used to detect and resolve inconsistency occurrences at
the same time. Alternative (2) will only be able to resolve
inconsistency occurrences that have already been identified
previously. On the other hand, as we will see later, alter-
native (1) suffers from severe scalability problems. In both
alternatives we use logic negation to express the fact that
we do not want inconsistencies in the model. Because nega-
tion of the conjunction of literals is used we need a planning
approach that allows the use of disjunction and negative lit-
erals in the goal. This is one of the main reasons why we
have selected FF as a planning tool for our experiments.

The plan is a sequence of actions that reaches the desired
goal. It is generated automatically by the domain indepen-
dent planning algorithm. A complete resolution plan that
solves the four inconsistency occurrences of the motivating
example is shown in Figure 2. Remark that our approach
prohibits the generation of a resolution plan that leads to
ill-formed models (i.e., models that do not conform to their
metamodel).

delete_Generalisation :

(Generalisation g10 label10 c1 c9)

modify_Association_End_Lower_Multiplicity :

from: (Association_End ae1 c9 role1 star one non)

to: (Association_End ae1 c9 role1 star zero non)

Figure 2: Complete resolution plan that resolves all four
inconsistency occurrences.

4.3 Scalability Study
There are different ways in which to specify the input for the
automated planning algorithm. To specify the initial state,
we can either use the complete model or we can restrict the
search space by using a partial model that contains only
those elements that are involved in the inconsistency occur-
rences. To specify the desired goal, we can choose between
using the negation of the inconsistency detection rules or
using the negation of the inconsistency occurrences them-
selves.

In order to assess which of the above four choices produces
the best results, we compared the timing results of each
considered possibility. In order to remove noise, each ex-
periment was executed 10 times and the average time and
standard deviation was computed. All experiments were
carried out on a 64-bit Apple MacBook with 2.4 GHz Intel
Core 2 Duo processor and 4GB RAM, 2.9GB of which were
available for the experiment.

The experiments using the complete model as initial state
and the negation of the inconsistency detection rules as de-
sired goal and using the partial model as initial state and
the negation of the inconsistency detection rules as desired
goal, ran out of memory. Using the complete model as ini-
tial state and the negation of the inconsistency occurrences

as desired goal, the resolution plan of Figure 2 was gener-
ated in 14.84 seconds on average with a very low standard
deviation of 0.09 seconds. Using a partial model as initial
state, and the negation of the inconsistency occurrences as
desired goal, the resolution plan of Figure 2 was generated
in 0.268 seconds on average, with a standard deviation of
0.004 seconds.

To verify whether the proposed approach scales up to larger
models, we have stress-tested both of the successful experi-
ments (using the negation of the inconsistency occurrences
as desired goal). Again each experiment was executed 10
times and the average time and standard deviation was com-
puted.

First, we artificially augmented the size of the motivating
example of Figure 1 by adding an increasing number of iso-
lated classes to the model (from 1 class to 20 classes). Since
these classes are unrelated to the inconsistency occurrences
that the algorithm needs to resolve, the algorithm is still
able to find the same resolution plan and the partial model
is left untouched. However, the time it takes to generate a
plan increases as the model size increases.

Figure 3a illustrates the timing results if we use the com-
plete model as initial state. It takes only 15 seconds for
our initial example, but it takes more than 5 hours for the
model with 20 more added classes. A regression analysis re-
veals an exponential relation with coefficient of determina-
tion R2 = 0.982, indicating a very good fit of the regression
model. Two other candidate regression models we verified
had a lower goodness of fit: 0.977 for a quadratic polynomial
model and 0.884 for a power curve. These results show that
using a complete model as initial state does not scale up to
larger models.

Secondly we studied the timing results when the size of the
partial model increases. The motivating example of Figure 1
contains an inheritance chain of classes for the two types of
considered inconsistencies. We artificially augmented the
size of the model by increasing the length of the inheritance
chains involved in the inconsistency occurrences. We did
this gradually, by adding between one and eight intermedi-
ate superclasses, and computing the timing results for each
partial model.

Figure 3b shows the timing results of carrying out this exper-
iment. The figure shows a strong increase in time to compute
the resolution plan as the size of the partial model increases.
The standard deviation was always below 2%, and less than
0.4% on average. A regression analysis reveals an exponen-
tial growth (with coefficient of determination R2 = 0.995) in
the time needed to find a resolution plan. Two other regres-
sion models we verified had a lower goodness of fit: 0.927 for
a quadratic polynomial model and 0.949 for a power curve.

We also verified whether the number of inconsistency occur-
rences to be resolved affected the timing results. To achieve
this, we reduced the desired goal by generating plans that
resolve only 2 or 3 inconsistency occurrences, respectively.
In all of these cases we found an exponential growth in time.
We obtained a goodness of fit R2 = 0.991 for resolving 2
inconsistency occurrences, and R2 = 0.992 for resolving 3
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0.442 0.444 0.44 0.444 0.444 0.446 0.444 0.444 0.445 0.449 0.4441 0.00277424
0.518 0.532 0.51 0.521 0.528 0.523 0.521 0.518 0.517 0.516 0.5207 0.00465794
0.611 0.605 0.61 0.606 0.603 0.608 0.606 0.606 0.607 0.614 0.6075 0.00320435
0.711 0.711 0.71 0.709 0.707 0.708 0.705 0.707 0.710 0.713 0.7091 0.00244584
0.852 0.851 0.84 0.843 0.840 0.839 0.843 0.839 0.842 0.838 0.8431 0.00226779
1.001 0.997 1.00 1.001 1.003 1.017 0.998 1.001 0.997 1.002 1.0013 0.00659951
1.180 1.180 1.18 1.186 1.181 1.197 1.197 1.188 1.185 1.178 1.1856 0.00688684
1.398 1.398 1.40 1.396 1.403 1.394 1.400 1.389 1.389 1.401 1.3964 0.00523723
1.628 1.639 1.65 1.640 1.643 1.637 1.642 1.652 1.645 1.644 1.6415 0.00437526
1.945 1.950 1.95 1.958 1.946 1.940 1.954 1.953 1.944 1.961 1.95 0.00717013
2.273 2.272 2.27 2.268 2.272 2.266 2.273 2.269 2.270 2.270 2.2704 0.00223207
2.643 2.631 2.63 2.630 2.650 2.622 2.640 2.643 2.637 2.645 2.6369 0.00950845
3.057 3.057 3.05 3.057 3.067 3.046 3.057 3.069 3.057 3.056 3.0575 0.00744384
3.528 3.540 3.53 3.533 3.530 3.533 3.532 3.541 3.541 3.537 3.5345 0.00450198
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(c) Adding class attributes to the partial model.

Figure 3: Scalability timing results (the y-axis represents
the time in seconds).

inconsistency occurrences.

Finally, we verified whether the size of the metamodel affects
the timing results. To achieve this, we added a new element
to the metamodel:
(Attribute ?id - attribute_id ?class - class_id

?Name - String ?Type - Type)

This requires to add three new actions, to create, modify and
delete attributes, respectively. It did not affect the timing
results as long as attributes are not used in the initial state
and the desired goal.

As a next step, we increased the size of the initial state by
adding 1 to 20 attributes to the existing classes of the model.
The desired goal was not modified. The standard deviation
was 0,7% on average. The results are shown in Figure 3c.
For an initial state with 1 attribute added the time was 0.27
seconds. After adding 20 attributes it was 3.5 seconds. A
regression analysis revealed a quadratic polynomial with a
goodness of fit R2 = 0.994. Two other regression models we
verified were an exponential model with R2 = 0.982 and a
power model with R2 = 0.763.

4.4 Discussion
The exponential timing results obtained through the exper-
iments described in the previous section, indicate that the
approach is not usable in practice. Using the approach to
resolve inconsistencies one by one would be feasible because
the partial model and desired goal will remain relatively
small. This is not a good solution, because it does not take
full advantage of automated planning. In addition, incon-
sistency occurrences and their resolution actions are often
interdependent. Another important limitation we encoun-
tered is the expressiveness of the PDDL syntax. It does not
offer important features such as transitive closure, primitive
types, numbers. In addition, literals cannot be modified
(they have to be deleted and added again). A third limita-
tion of our approach is that, currently, we generate only a
single resolution plan. The resolution of several inconsisten-
cies can give rise to several different resolution plans, i.e.,
different sequences of resolution actions leading to possibly
different consistent models.

Several improvements to the approach can be envisaged. A
first improvement is to adapt the planning algorithm so that
it generates several resolution plans among which the model
designer could choose. The scalability problem could be
adressed by implementing a domain-specific planner that
can be optimized by making it more specific and more per-
formant for the specific problem we want to tackle. In addi-
tion, since we are not constrained by the PDDL syntax, this
would solve the problems of expressiveness we encountered.
The timing results could be improved by using regression
planning as opposed to progression planning [23], as used
by FF. Progression planning depends mainly on the size of
the initial state and it does not exclude irrelevant actions.
Regression planning works only with relevant actions. Be-
cause of this, the search space will be significantly smaller.
Further experiments are needed to verify whether regression
planning will be more appropriate for our needs.
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5. BEYOND PLANNING
Since the automated planning approach does not meet our
expectations, we would also like to study other techniques
coming from the domain of artificial intelligence for the pur-
pose of resolving modeling inconsistencies in an automated
way.

Logic-based approaches have been used for different but re-
lated purposes in inconsistency resolution. Marcelloni and
Akist [15, 16] used fuzzy logic to cope with methodologi-
cal inconsistencies in design models. It remains to be seen
whether this approach can be generalised to resolve any kind
of model inconsistency. Castro et. al. [5] used logic abduction
to detect and resolve inconsistencies in source code. Some
preliminary results we carried out to apply this approach to
resolve inconsistencies in design models appeared promising,
but further work is necessary to assess whether the approach
scales up and works in practice. Almeida da Silva et al. [1]
implemented a Prolog program to generate resolution plans
for inconsistent models. The approach is promising but still
requires a lot of manual encoded input to specify the gener-
ator functions and the causes of the inconsistencies.

Harman [11] advocates the use of search-based approaches
in software engineering. This includes a wide variety of
different techniques and approaches such as metaheuristics
(e.g. variable neighborhood search [3, 4]), local search al-
gorithms, automated learning, genetic algorithms [23]. We
believe that these techniques could be applied to the problem
of model inconsistency management, because it satisfies at
least three important properties that motivate the need for
search-based software engineering: the presence of a large
search space, the need for algorithms with a low computa-
tional complexity, and the absence of known optimal solu-
tions.

In order to assess the adequacy of all these different ap-
proaches to inconsistency management, there is also an ur-
gent need to define benchmarks allowing to compare them.
Such a benchmark should contain at least a set of shared
case studies on which to evaluate each approach; as well as
a set of clearly identified criteria enabling the comparison of
approaches and their quality.

6. CONCLUSION
In this article, we explored the use of automated planning, a
logic-based approach originating from artificial intelligence,
for the purpose of resolving model inconsistencies. We are
not aware of any other work having used this technique for
this particular purpose. The results of our experiments re-
veal that the approach is feasible but suffers from various
scalability problems. We have discussed ways in which the
scalability can be improved. We have also discussed alter-
native search-based techniques that may deal with inconsis-
tency resolution in a scalable way.
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ABSTRACT
Feature models have been widely adopted to reuse the re-
quirements of a set of similar products in a domain. When
constructing feature models, it is difficult to always ensure
the consistency of feature models. Therefore, tolerating in-
consistencies is important during the construction of feature
models. The usual way of tolerating inconsistencies is to
find the minimal unsatisfiable core. However, identifying
the minimal unsatisfiable core is time-consuming, which de-
creases itself the practicability.

In this paper, we propose a priority based approach to
tolerating inconsistencies in feature models efficiently. The
basic idea of our approach is to find the weaker unsatis-
fied constraints, while keeping the rest of the feature model
consistent. Our approach tolerates inconsistencies with the
help of priority based operations while building feature mod-
els. To this end, we adopt the constraint hierarchy the-
ory to express the degree of domain analysts’ confidence on
constraints (i.e. the priorities of constraints) and tolerate
inconsistencies in feature models. Experiments have been
conducted to demonstrate that our system can scale up to
large feature models.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering

Keywords
Feature Model, Constraint Hierarchy, Tolerate Inconsistency

1. INTRODUCTION
Feature models [6, 7] have been widely adopted to reuse

the requirements of a set of similar products in a domain.
During the process of products reuse, specific products that
satisfy all the constraints are derived from feature mod-
els. Inconsistent feature models contain contradictory con-
straints that cannot be satisfied at the same time, leading to
no valid products derivable from them [13]. However, it is
difficult to always ensure the consistency of feature models,
during the construction of feature models. Therefore, toler-
ating inconsistencies is important when constructing feature
models.

The usual way of tolerating inconsistencies is to find the
minimal unsatisfiable core in inconsistent feature models.
However, identifying the minimal unsatisfiable core is time-
consuming [9], which decreases itself the practicability.

In this paper, we propose a priority based approach to
tolerating inconsistencies in feature models, and report an
implementation of a system that not only automatically tol-
erates inconsistencies by identifying weaker unsatisfied con-
straints, but also supports domain analysts to handle the
tolerated inconsistencies, with the help of priority based op-
erations. To this end, we adopt the constraint hierarchy the-
ory [5], a known practical theory in user interface construc-
tion, to express the degree of domain engineers’ confidence
on constraints (i.e. the priorities of constraints) and tolerate
inconsistencies in feature models. The main contributions of
our paper are summarized as follows:

∙ We show the importance of the constraint hierarchy
theory in tolerating inconsistencies in feature models,
and we adopt it to divide a feature model into the con-
sistent feature model part and pending constraint set
part, which will help tolerate inconsistencies in feature
models.

∙ We make the first attempt of conducting a constraint
hierarchy system1 for tolerating inconsistencies in fea-
ture models, through adapting and extending an ex-
isting incremental algorithm-SkyBlue [10, 11].

1See http://sei.pku.edu.cn/˜ wangbo07/ for more details.
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∙ We have conducted the experiments on our system,
which demonstrates that our approach scales up to
very large feature models.

The rest of this paper is organized as follows. Section
2 introduces some preliminary knowledge on feature mod-
els, constraint hierarchy and SkyBlue. Section 3 gives an
overview of our approach. Section 4 amplifies our approach.
Section 5 illustrates the scalability of our approach. Section
6 discusses the related work, and Section 7 concludes the
paper and highlights the future work.

2. PRELIMINARIES
In this section, we first describe feature models, followed

by the introduction to the constraint hierarchy theory and
SkyBlue. All these three serve as the fundamental supports
for tolerating inconsistencies in feature models.

2.1 Feature Model
A feature model organizes the requirements of the prod-

ucts of a domain, in terms of features and the relationships
between them. A simplified feature model of the mobile
phone domain [3], which adopts our meta model of feature
models [15], is shown in Fig. 1.

Mobile Phone 

Call GPS Screen Media 

Basic Color High 
Resolution Camera MP3 

Composite Constraints: 
All-Set(Screen) composite-requires Single-Set(Basic, Color, High Resolution) 
All-Set(Media) composite-requires Or-Set(Camera, MP3) 

Legend 

Mandatory Feature 

Optional Feature 

Require 
Exclude 

Figure 1: A simplified example of the mobile phone
domain

A feature is a software characteristic with sufficient user
or customer value, which essentially denotes a cohesive set of
individual requirements [14]. In feature models, if a feature
is bound (i.e. selected and implemented in a product), so
is its parent. A mandatory feature should be bound if its
parent is bound. An optional feature can be unbound (i.e.
deselected and not implemented in a product), even if its
parent is bound.

There are three kinds of simple constraints on two fea-
tures, namely requires, m-requires, and excludes. If feature
A requires feature B, it indicates that B must be bound when
A is bound. If feature A m-requires feature B, it means that
A and B should be bound or unbound at the same time. If
feature A excludes feature B, it indicates that they cannot
be bound at the same time.

There are three kinds of predicates on a set of features,
namely All, Alternative and Or. Predicates All, Alternative,
and Or indicate these predicates are true only if all, only
one, and at least one features are bound in their feature
sets, respectively. For instance, Single-Set (Basic, Color,
High Resolution) indicates that this predicate is true when
only one kind of screens can be chosen in a product.

Based on the predicates, there are three kinds of com-
posite constraints on two feature sets, composite-requires,
composite-m-requires, and composite-excludes. For example,
given All-Set(Media) composite requires Or-Set(Camera, MP3),
if All-Set (Media) is true, Or-Set (Camera, MP3) must be
true. For the details of the composite constraints, see sub-
section 4.1.

Products are derived from a feature model by binding and
unbinding constraints. A valid derived product must satisfy
all the constraints in the feature model. A feature model
contains inconsistencies if no valid products can be found to
satisfy all the constraints in this feature model [13]. These
inconsistencies are caused by the contradictory constraints
in feature models.

2.2 Constraint Hierarchies and SkyBlue
When a solver is used to check inconsistent models, it is

not enough for the solver to just signal the detected inconsis-
tencies. The constraint hierarchy theory [5] provides a way
to handle the detected inconsistencies through maintaining
constraint hierarchies. A constraint hierarchy contains a set
of constraints, each assigned with a priority, indicating the
importance of the constraint. Given an inconsistent model,
a constraint solver makes sure that stronger constraints are
satisfied, through unsatisfying the contradictory weaker con-
straints.

SkyBlue is an incremental constraint solver that uses local
propagation to maintain the constraint hierarchies. It has
been successfully applied in many GUI systems. SkyBlue
requires that methods can be derived from constraints (ex-
plained later in this sub-section), and thus is not applicable
to some kinds of constraints. One important finding of our
approach is that the constraints in feature models satisfy
the prerequisite of SkyBlue (with minor extension) and thus
can enjoy the performance boost of SkyBlue (see Section 4).

C2 
Strongest 

C1 
Weak 

C3 
Strong A B C 

C4 
Medium 

Unselected 
Method 

C2 
Strongest 

C1 
Weak 

C3 
Strong A B C 

C4 
Medium 

Unenforced 
Constraint 

C2 
Strongest 

C1 
Weak 

C3 
Strong A B C 

C1: A = 5 (Weak) 
Methods: 
1) A = 5 
 
 
C2: A+B = 10 (Strongest) 
Methods: 
1) A  = 10 – B 
2) B  = 10 – A 

C3: B+C = 7 (Strong) 
Methods: 
1) B = 7 – C 
2) C = 7 – B  
 
C4: C = 6 (Medium) 
Methods: 
1) C = 6 

Constraint 

Variable 

Legend 

Determine a 
Variable 

Figure 2: A simple example for SkyBlue

The input of SkyBlue is a set of variables and the con-
straints on these variables. The output of SkyBlue is a set
of values that satisfy stronger constraints and leave the con-
tradictory weaker constraints unsatisfied.

In SkyBlue, each constraint is equipped with one or more
methods. SkyBlue satisfies a constraint by selecting one
of its methods and executing the selected method. Sky-
Blue enforces a constraint by choosing one method for this
constraint and revoke a constraint by choosing no meth-
ods for this constraint. A constraint is enforced if it has
a selected method, otherwise, it is unenforced. The vari-
ables and the constraints form the constraint graph. The
constraint graph, together with the selected methods, forms
the method graph.
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The output of SkyBlue, the value set for variables, is cal-
culated through constructing and executing a locally-graph-
better (called LGB) method graph. A method graph is LGB
if there are no method conflicts and there are no unen-
forced constraints that could be enforced by revoking one
or more weaker constraints (and possibly changing the se-
lected methods for other enforced constraints with the same
or stronger strength) [10].

As a simple example, the method graphs in Fig. 2 has
four constraints C1, C2, C3 and C4 on three variables A, B
and C. Each constraint has one or more methods to make
the constraint hold (for instance, two methods are given to
satisfy C3 by either calculating B from C or calculating C
from B). To satisfy every constraint, SkyBlue tries to se-
lect a method from each constraint, as shown in the upper
right of Fig. 2, but there is a method conflict (inconsistency):
variable A is determined by two methods, namely, A=5 and
A=10-B. To resolve this conflict, we have to revoke some
weaker constraint to enforce the stronger constraints. Sky-
Blue finds the strong constraints that can be enforced, while
leaving the weaker constraints unenforced by constructing
LGB method graph. The LGB method graph of this ex-
ample is shown in the middle right of Fig. 2, where C1 is
revoked. After executing the selected methods in the LGB
method graph, A equals to 9, B equals to 1, and C equals to
6, which satisfy the three stronger constraints, namely C2,
C3 and C4. C1 may be reenforced automatically when its
contradictory constraints are deleted. For example, if C4 is
deleted, a new LGB method graph is constructed, in which
constraint C1 is reenforced by selecting method “A equals
to 5”, as shown in the lower right of Fig. 2.

3. APPROACH OVERVIEW
In this section, we first give an overview of our approach,

and then we use an example to illustrate how to tolerate
inconsistencies in feature models.

3.1 Feature Model Inconsistency Tolerance
In our approach, a feature model is divided into two parts,

namely the consistent feature model part (called CFM part)
and the pending constraint set part (called PCS part). The
PCS contains weaker constraints that conflict with some
stronger constraints in the CFM. If the PCS is empty, the
feature model is consistent. Domain analysts work on the
CFM to construct the feature model and work on the PCS
to handle the tolerated inconsistencies. An overview of the
inconsistency tolerance is shown in Fig. 3.

Check 
Inconsistency 

Generate & 
Update Pending 
Constraint Set 

Automatic Step 

Operation 

Add / Delete a 
Constraint 

Consistent 
Feature Model 

Pending 
Constraint Set 

Raise the  
Priority of a 
Constraint 

Reduce the  
Priority of a 
Constraint 

Delete a 
Constraint 

Artifact 

Feature 
Model 

Reduce the  
Priority of a 
Constraint 

Raise the  
Priority of a 
Constraint 

Figure 3: Feature model inconsistency tolerance

We divide a feature models into the CFM and the PCS
through constructing LGB method graphs. The CFM con-
sists of the enforced constraints in the LGB method graph,

and the PCS consists of the unenforced constraints in the
LGB method graph. After a new LGB method graph is
constructed, the CFM and the PCS are updated.

1. If the constructed LGB method graph does not contain
any unenforced constraints, the PCS is empty and the
CFM contains all the constraints in the feature model.
At this moment, the feature model is consistent.

2. If the constructed LGB method graph contains one or
more weaker unenforced constraints, the constraints in
the PCS are replaced with these unenforced constraints
and the constraints in the CFM are replaced with the
enforced constraints in the LGB method graph. At
this moment, the feature model is inconsistent.

Four kinds of operations on the CFM are provided to help
domain analysts construct feature models. When construct-
ing feature models, domain analysts can add a constraint
with priority into the CFM or delete a constraint from it.
Domain analysts can change priorities of constraints when
constructing feature models.

There are three conditions on which the enforced con-
straints in the CFM may become unenforced and thus are
put into the PCS: 1) their priorities are reduced; 2) the pri-
orities of their contradictory weaker constraints in the PCS
are raised; 3) some contradictory stronger constraints are
added. When these conditions are met, we generate a new
LGB method graph to update the CFM and the PCS.

Three kinds of operations on the PCS are provided to
help domain analysts handle the tolerated inconsistencies.
If the domain analysts become more confident about a con-
straint in the PCS, he can raise its priority. The possibility
of reenforcing this constraint become larger as its priority
rises. If the domain analysts become less confident about
a constraint, he can reduce its priority. The possibility of
enforcing this constraint becomes smaller as its priority de-
creases. If domain analysts believe some constraints do not
represent the correct relationships among the features, they
can delete them from the in pending constraint set.

There are three conditions on which the unenforced con-
straints in the PCS can be re-enforced again, and thus are
put into the CFM: 1) their priorities are raised; 2) their con-
tradictory stronger constraints in the CFM are deleted; 3)
the priorities of their contradictory stronger constraints in
the CFM are reduced. When these conditions are met, we
generate a new LGB method graph to update the CFM and
the PCS.

3.2 An Example
To demonstrate how we tolerate inconsistencies in feature

models, let us see how to find the CFMs and the PCSs, and
handle the tolerated inconsistencies in the feature model in
Fig. 4.

Suppose all the constraints have been added into the fea-
ture model except “feature C excludes feature D” (the red
part in Fig. 4). The feature model is consistent before
adding“feature C excludes feature D”, since the LGB shown
in Fig. 4(b) contains no unenforced constraints. At this mo-
ment, the PCS is empty. Note that even some variables are
determined by more than one method in the LGB method
graph, no conflict happens, because these variables are set
to the same value (see Section 4 for more detail).

When the “exclude” constraint is added and enforced, a
LGB method graph, in which the constraints“Mandatory D”

17



Add excludes 
between C and D 

A 

C B D E 

F G 

Composite Constraint: 
All-Set(B) c-requires Single(F,G)  Priority: 4 

Priority:            1                3              6 
 
Confidence :   Low      Medium   High 
 
Default Priority: 3 

Legend: 

Unbind a feature 

Bind a feature A 

B 

C D E 

F G 

Root Feature 
Priority 6 

5 

4 

3 

5 

3 5 

4 

4 5 3 3 4 

6 

5 3 

4 4 

4 

(a) (b) 

Add excludes 
between C 

and D 

5 

3 

Figure 4: An example of feature model inconsistency
tolerance

and “feature E requires feature D” are revoked, is generated.
The PCS consists of these two revoked constraints.

Domain analysts can delete the constraint “feature D re-
quires feature E” if they believe the “require” constraint
dose not represents the correct relationship between fea-
ture D and E. If domain analysts have more confidence on
the “Mandatory D” than before, they raise its priority to 5.
Then our approach will try to enforce it by constructing a
new LGB. In the new LGB method graph, only “feature B
requires feature C” is revoked. The PCS is updated, and it
only contains the “require” constraint.

4. TOLERATE INCONSISTENCIES IN FEA-
TURE MODELS

In this section, we will describe how we adopt the con-
straint hierarchy theory by revising and extending SkyBlue
to tolerate inconsistencies in feature models.

4.1 Map Feature Models to Constraint Graphs
To use SkyBlue to detect and tolerate inconsistencies, the

first thing is to map the elements of feature models to the
elements of SkyBlue constraint graphs.

The mapping consists of two steps: 1) each feature of
the feature model is mapped to a variable of the SkyBlue
constraint graph; 2) each constraint of the feature model is
mapped to a SkyBlue constraint (called SBC) that is repre-
sented by a set of methods.

SkyBlue cannot be generalized to derive methods from
some “inequality-like” constraints. But feature models are
different from this general case. In feature models, each
feature can have only two states: 1) bound; 2) unbound.
Therefore, it is possible to derive methods for constraints in
feature models, through combinations of the states of “cer-
tain” features. Concrete rules for the mapping from feature
models to constraint graphs are listed in Tables 1 and 2.

Binding a feature (Bind(feature)) sets the bind state of
the feature bound. Unbinding a feature (Unbind(feature))
sets the bind state of the feature unbound. Predicate on a
feature set represents the value of the predicate of a fea-
ture set. In our approach, simple constraints can be repre-
sented by a composite constraint. For example, “feature
A excludes feature B” can be represented as “All-Set(A)
composite-excludes All-Set(B)”.

In Table 2, each kind of group predicates is associated
with a set of methods that can be executed to set the pred-
icate True or False. These predicate methods, together
with the composite constraint methods, can map a com-

Table 1: Methods for constraints

Relationship Number of 
Methods Methods 

2 {Bind(A), Bind(B)} or 
{Unbind(A), Unbind(B)} 

2 {Bind(A)} or  
{Unbind(B)} 

2 {Predicate(Set-A) = False} or 
{Predicate(Set-B ) = True} 

2 
{Predicate(Set-A) = False, 
Predicate(Set-B) = False} or 
{Predicate(Set-A) = True, 
Predicate(Set-B) = True} 

2 {Predicate(Set-A)= False} or 
{Predicate(Set-B)= False} 

B 

A 

A 

B 

Mandatory 

Optional 

Composite-Requires 

Composite-M-requires 

Composite-Excludes 

Set-A Set-B 
Predicate Predicate 

Set-A Set-B 

Predicate Predicate 

Set-A Set-B 

Predicate Predicate 

Table 2: Methods for predicates

Predicate Value
Number

Of Methods
Methods

True 1 {Bind(A1),Bind(A2) …Bind(An)} 

False n {Unbind(A1)} or {Unbind(A2)} or … 

{Unbind(An)}

True n
{Bind(A1),Unbind(A2),Unbind(A3)…Unbind(An)} 
{Bind(A2),Unbind(A1),Unbind(A3)…Unbind(An)} or …

{Bind(An),Unbind(A1),Unbind(A2)…Unbind(An-1)} 

False 1+(n2-n)/2 {Unbind(A1),Unbind(A2)…Unbind(An)} or 
Any two of the features in the group are bound 

True n {Bind(A1)} or {Bind(A2)} or … {Bind(An)}

False 1 {Unbind(A1), Unbind(A2) …Unbind(An)} 

All
Set-A

{A1,A2…An}

Alternative
Set-A

{A1,A2…An}

Or
Set-A

{A1,A2…An}

posite constraint to an SBC. For example, given a compos-
ite constraint “All-Set(A,B) composite-excludes Alternative-
Set(C,D)”, methods are generated through combination of
the states of the features in the two sets. The four derived
methods are {Unbind(A)},{Unbind(B)}, {Unbind(C), Un-
bind(D)}, and {Bind(C), Bind(D)}.

4.2 Construct LGB Method Graphs
In our approach, we divide a feature model into the CFM

and the PCS, and provide priority-based operations through
constructing LGB method graphs. To construct LGB method
graphs for feature models’ tolerance, we have to extend and
revise SkyBlue through: 1) redefining method conflicts; 2)
specializing the execution process.

An LGB method graph is constructed under the follow-
ing conditions: 1) a new constraint is added/deleted to the
CFM; 2) the priority of a constraint in the CFM/PCS is
changed. The pseudo codes are shown below.

Add/delete a constraint in CFM

ConstructCFM(Constraint SBC , Boolean isAdd){
If(isAdd){

ConstructLGB(Constraint SBC)
}
Else {

UnenforcedCnsSet =
collectUnenforcedConstraints ();

While(UnenforcedCnsSet != null){
unenforcedCn = UnenforcedCnsSet.get();
ConstructLGB(SBC);

}
}
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Changing a constraint’s priority

ChangePriority(Constraint SBC , Priority p){
oldPriority = SBC.priority;
SBC.priority = p;
If (oldPriority <p){

If (SBC.selectedMethod ==null)
ConstructLGB(SBC);

}
Else If(oldPriority >p){

If (SBC.selectedMethod !=null)
ConstructLGB(SBC);

}
}

Constructing an LGB method graph involves enforcing
the constraints in the constraint graph. To enforce a con-
straint, we select a method for it, change the methods of the
constraints with the same or stronger priorities, or revoke
one or more weaker constraints. This process is called con-
structing a method vine or mvine. When an mvine for the
newly-added SBC is built, the SBC is successfully enforced.

Note that each time a constraint is successfully enforced
(i.e. an mvine is constructed), one or more weaker con-
straints may be revoked. To construct an LGB method
graph, these revoked constraints are added to the unenforced
constraint set. Then our algorithm repeatedly tries to en-
force all the constraints in the unenforced constraint set by
constructing mvines for these constraints, until none of the
constraints can be enforced. This process terminates be-
cause of the finite number of constraints. The pseudo code
of constructing an LGB method is shown below.

Construct an LGB method graph

ConstructLGB(Constraint SBC){
//clean the unenforced constraint
//set before enforce the newly -added SBC}
clearUnenforcedCnSet ();
addToUnenforcedCnSet(SBC);
While(UnenforcedCntSet != null){

unenforcedCn = UnenforcedCnSet.get();
buildMvine(unenforcedCn , unenforcedCnSet);

}
}

SkyBlue uses a backtracking depth-first search to build
mvines. The pseudo code of building a mvine is shown as
follows:

Build a Mvine for a unenforced constraint

buildMvine(Constraint root){
While (root has methods){

Method m = getMethod ();
If(! checkConflicts ()){

return true;
}Else{

Constrint cn = getConflictsConstraint ();
If(cn weaker than root){

revokeConstring(cn);
return true;

}Else{
If(buildMvine(cn))

return true;
}

}
}
return false; //start backtrack

}

To apply the SkyBlue to detect and tolerate inconsisten-
cies in feature models,our algorithm redefines method con-
flict and revises the SkyBlue algorithm for building mvines.
In SkyBlue, a conflict happens when a variable is determined
by more than one method. In our approach, the variables

in the constraint graph can only be bound and unbound.
Therefore, even if a variable is determined by more than
one method, it may not cause a conflict (e.g. see variable B
in Fig. 4). A conflict happens only when this variable is set
to different value by different methods.

In SkyBlue, if an LGB method graph contains directed
cycles, it is not possible to find an execution sort to satisfy
all the variables in the LGB method graph. However, our
approach can just execute all the methods to satisfy all the
constraints, because all the methods set a variable to a fixed
value.

5. PERFORMANCE
In this section, we investigate whether our approach can

scale up to large feature models. To evaluate the scalability,
we randomly generate feature models2 and tolerate the in-
consistencies in the generated feature models. We choose to
use generated models because none of the large models are
publicly available. The generated feature model contains a
root feature. We can specify the number of the subtrees that
are connected to the root feature, the height of the subtrees,
the number of the chid feature for each non-leaf feature in
the subtrees, the number of the constraints. The percentage
of the the variability of features are: Mandatory (25%) and
Optional (75%). The priorities of constraints are randomly
set between 1 to 5.
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Figure 5: Experiments results for randomly gener-
ated feature models

The environment for our experiments is a Win 7 PC with
a 2.66 GHz CPU, 2GB memory and the result is shown
in Fig. 5. A mandatory feature or optional feature brings
constraints with their parents, m-requires and requires, re-
spectively. The constraints showed in the results are the
constraints explicitly modeled into the feature models, they
do not contain the simple constraints that are brought with
the Mandatory and Optional feature.

In our approach, we check inconsistency and generate the
PCS incrementally. For example, in the second case, 425
mandatory or optional features are added (each bring a con-
straint), and 50 constraints are explicitly modeled, we gen-
erate the PCS 475 times in total and cost 1.2s in all. The
results indicate that our approach can scale up to large fea-
ture models.

6. RELATED WORK
Feature models are first proposed by Kang et al. [7] in the

feature-oriented domain analysis (FODA) method. Since

2See http://sei.pku.edu.cn/˜ wangbo07/ for our system and
the feature model random generation algorithm.
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then many researches focus on the detection of inconsisten-
cies in feature models [3]. Maßen and Lichter [13] proposed a
deficiency framework of feature model. They point out that
inconsistency is one of the most severe deficiencies in feature
models. Mannion et al. [8] was the first to use propositional
formulas to find inconsistencies. Batory [2] proposed an ap-
proach to detecting deficiencies with SAT Solver. Benavides
et al. [4] were the first to use constraint programming for
analysis on feature models. Our previous work [16] focused
on how to analyze feature models using BDD.

However, these approaches do not focus on how to find
the unsatisfied constraints and tolerate inconsistencies in
feature models. Balzer [1] pointed out the importance of
tolerating inconsistencies, when the inconsistencies cannot
be fixed. Trinidad et al. [12] focus on the explanation of
inconsistencies in feature models, which helps find unsatis-
fied constraints. Nakajima et al. [9] propose some heuristics
rules to find the unsatisfied core. However, these approaches
do not provide explicit support to handle the tolerated in-
consistencies and the scalability of these approaches is also
not clear. Zowghi et al. [17] propose an approach to han-
dling inconsistencies as a consequence of evolution changes
performed on requirements specification, while our approach
focuses on the inconsistencies in feature models.

7. CONCLUSION AND FUTURE WORK
In this paper, we adopt the constraint hierarchy theory

and extend the constraint solver–SkyBlue to implement a
system that can effectively tolerate inconsistencies in feature
models. The feature model is divided into two parts, consis-
tent feature model part and the pending constraint set part,
through building LGB method graphs. Domain analysts can
construct the feature model by working on the CFM while
handling the tolerated inconsistencies that are expressed ex-
plicitly by the PCS. Three operations are defined and sup-
ported by our system, with the purpose of helping domain
analysts handle the tolerated inconsistencies. Our future
work will focus on investigating the applicability of our ap-
proach.
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ABSTRACT
Maintaining consistency between models in development pro-
cesses is a challenging task. Though in software engineering
many case tools exist which allow the editing of models and
include code generators for reverse or round trip engineer-
ing, the source code is edited with specialized development
environments. The same holds for other models, such as re-
quirements specifications or architectures. The editing tools
are often decoupled from each other. Additionally, modifi-
cations of the models are performed simultaneously.

In this paper, we introduce strategies to resolve inconsisten-
cies by so-called repair actions. The novelty of the strategies
is that they specify different concurrent ways of coming to
a consistent state, not knowing anything about the mod-
ifications a user had applied. Concrete repair actions are
derived at runtime based on the consistency rules and the
inconsistent parts of the models only. The maintenance tool
can maintain additional models’ consistency without devel-
oping specialized repair actions. One new strategy proposed
in this paper in contrast to other approaches is to heal the
violated consistency rule or try a similar one.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering (CASE); D.2.7
[Software Engineering]: Distribution, Maintenance, and
Enhancement—Corrections, Version control ; D.2.12 [Soft-
ware Engineering]: Interoperability—Data mapping, Dis-
tributed objects; K.6.3 [Management of Computing and
Information Systems]: Software Management—Software
Development

Keywords
Inconsistency Management, Model Synchronization, Incre-
mental Transformation, Model-driven Development

1. INTRODUCTION

Development processes in engineering disciplines tend to be
highly complex. As a result, the product to be developed
needs to be modeled from multiple interdependent perspec-
tives and on different levels of abstraction. The results of de-
velopment activities like requirements definitions, software
architectures, or implementations in software engineering
are stored in models. Different models may overlap, so when
they are edited independently, they may impose constraints
on the system to be developed which are not satisfiable any
more. Models are then said to be inconsistent to each other
[29]. The task is to maintain the inter-model consistency
after editing.

In literature consistency maintenance of models are also
called inconsistency management [8] or model synchroniza-
tion [11] and involves the following tasks [23]: (i) consistency
of dependent models must be checked, (ii) inconsistencies
must be categorized, and (iii) inconsistencies must be han-
dled, i.e. resolved, ignored, or identified only. Reestablishing
consistency is also called reconcilation [28].

Usually, valid statements within model overlappings are for-
malized by consistency rules [23]. For example, a consis-
tency rule declares that for each class definition in a UML
class diagram a corresponding class definition must exist in
the source code. If a class exists in the diagram but not in
the source code, then the consistency rule is violated. With
the specification of consistency rules dependencies between
two or more models are therefore also specified. Thus, when
one model is changed and a consistency rule is violated,
then consistency can be reestablished by changing depen-
dent models analogously (propagation).

Many approaches face the problem of inconsistencies by of-
fering one integrated case tool which performs the tasks of
inconsistency management by direct propagation of changes
to dependent models such as e.g., EclipseUML [25] or Ra-
tional Software Delivery Platform [19]. But often there are
several reasons why changes cannot be propagated directly
to depending models: (i) when different specialized hetero-
geneous tools for a task are used or (ii) when developers are
distributed and edit different copies in parallel, so that an
integrated tool cannot observe incremental changes.

Version control systems cannot be used after parallel editing
of the models when dealing with graphical models [9], espe-
cially if they are stored within binary data: If they are stored
as text files, changes cause often an overall rearrangement
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of the text lines. Model transformation approaches [32, 4]
transform a source model into a target model. Mostly, these
transformations work batch-wise, i.e., a target model is gen-
erated completely from a source model, thus, changes on the
target model get overridden.

Therefore, consistency maintenance should resolve an incon-
sistency by propagation of changes on one model to depend-
ing models incrementally and bidirectionally. Incrementality
means that only local changes are made in a model to handle
one inconsistency so that other changes on the model which
were done in the meantime are not overwritten. Also incon-
sistency resolution should be made only on request, meaning
that inconsistencies must be tolerated [23]. For example, the
user’s changes on a model create inconsistencies but the edit-
ing process should not be interrupted, thus, resolving has to
wait until the end of the editing process. As an additional
requirement, interaction with the user is required when res-
olution is ambiguous.

Triple graph grammars (TGG) [27] were developed for han-
dling consistency maintenance problems of two models which
are modeled as graphs. The idea is to store fine-grained
n : m-relationships in a correspondence graph between a
source and a target graph and to specify analogous oper-
ations on the three models in so-called triple rules. By
applying triple rules, we may modify coupled models syn-
chronously, taking their mutual relationships into account.
But also the operations on one model can be performed inde-
pendently and based on the triple rule specification one can
maintain consistency by applying the corresponding opera-
tions on the other model. TGG approaches basically work
incrementally and bidirectionally.

A problem is that triple rules need to be monotone, i.e.
they only produce new nodes and edges and are not allowed
to delete any. Thus, only inconsistencies caused by addi-
tion of new nodes in one of the models can be resolved by
transforming them into the dependent model (by applying
remaining operations of a triple rule). We would like to call
inconsistencies of that kind category 1 inconsistencies. But
modifications on one of the models may affect nodes which
are related to nodes of the other model. It can then happen
that the relationship defined by the triple rule which was
applied before is not present any more. We would like to
call inconsistencies of that kind category 2 inconsistencies.

In this paper, we introduce strategies to resolve category
2 inconsistencies by so-called repair actions. The novelty
of the strategies is that they specify different concurrent
ways of coming to a consistent state, not knowing anything
about the modifications a user had applied. Concrete re-
pair actions are derived at runtime based on the consistency
rules and the inconsistent parts of the models only. The
maintenance tool can maintain additional models’ consis-
tency without developing specialized repair actions. One
new strategy proposed in this paper in contrast to other
approaches is to heal the violated consistency rule or try a
similar one.

This paper is structured as follows: Section 2 presents a
scenario where the maintenance tool is applied. Section 3
introduces some basic concepts of the underlying data struc-

tures, the modeling of consistency rules, and the definition
of consistency in this setting. In Section 4, the strategies
for finding and resolving category 2 inconsistencies are pre-
sented. Section 5 describes shortly the implementation of
the maintenance tool and the resolving strategies. Related
work is discussed in Section 6 and, finally, Section 7 con-
cludes the paper.

2. SCENARIO
While the underlying concepts of the maintenance tools are
fairly general and domain-independent, we focus on software
engineering and introduce a sample scenario where UML
class diagrams and source code are maintained consistent.
For designing the structure of a system, UML class diagrams
are well-suited as they abstract from the implementation
details of the system and they are part of static structure
diagrams in the UML. Heterogeneous tools may be used for
creating UML class diagrams and source code, respectively.
In the following, we assume that the UML class diagrams
are maintained by Eclipse [31] and source code is edited
in Visual Studio [20]. We chose to use these applications
for our case study because they were successfully used in
many software projects as modeling tool as well as integrated
software development environment and they are very widely
known.

Figure 1 illustrates how the tool assists in maintaining con-
sistency when changes are made simultaneously. Three dif-
ferent versions of the sample UML class diagram and the
corresponding Visual Studio (VS) object model are shown
above and below the dashed line, respectively. The tool
maintains a data structure which contains links for connect-
ing the two models. These links are represented by ellipses
which are located on the dashed line. Dotted lines are used
to indicate the objects participating in a link1. The connec-
tions of a link to objects in both models base on template
specifications for corresponding object patterns, e.g. that
UML classes correspond to code classes, UML associations
correspond to attributes in the code owned by corresponding
classes, or UML methods correspond to code methods also
both owned by corresponding classes. Furthermore, arrows
located on the right indicate the directions of change prop-
agations (structural and attribute changes, respectively).
The figure illustrates a re-design process consisting of three
steps described in the following.

Initially, the VS object model and the corresponding UML
class diagram are consistent to each other, thus, links al-
ready exist between the objects (see left version in the fig-
ure). They each contain the classes Control and DataAcces-
sObject and the methods getDBItem and getFileItem which
are elements of latter class. The association data is rep-
resented in the object model as attribute referencing the
corresponding class object as type.

Secondly, both models are edited simultaneously (see mid-
dle version in the figure). Changes are marked with new
or * in the figure for newly added objects or changed ob-
jects, respectively. To the VS object model only the helping
function helper is added. To the class diagram two further

1Please note that this is a simplified notation. Some details
of the link data structure introduced later are omitted and
also not every link is shown.
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Figure 1: Recovering consistency between design and implementation

classes DBAccess and FileAccess are added and the meth-
ods of their super class are distributed among these classes.
Additionally, the method names are generalized to getItem.
The models are now inconsistent but the links still exist.
We see that inconsistencies caused by newly added objects
are category 1 inconsistencies while those caused by changed
objects are category 2 inconsistencies.

Finally, the maintenance tool is used to synchronize the par-
allel work which results in the right versions of the models
in the figure. The newly added objects are added to the re-
spective other model. The category 2 inconsistencies within
the methods correspondence relation are the non-valid at-
tribute condition, i.e. the method names are not equal, and
the owning classes of the UML and code methods do not
correspond to each other, respectively. To resolve the incon-
sistencies the name change in the UML model is propagated
to the code model and the shift of the methods to different
classes in the UML model results in rearrangement of the ref-
erences between the class and method objects. What we see
here is, that the basic template specification of correspond-
ing methods are still valid. Please note that there might be
compile errors in the source code after the synchronization.

The example presented above demonstrates the functional-
ity of the maintenance tool, but it does not show how this
is achieved. In the next sections, the underlying conceptual
approach is presented. The implementation is introduced in
Section 5.

3. CONCEPTS OF THE APPROACH
In our approach, we use typed, directed graphs to represent
the models between which relationships exist. Graphs con-
sisting of nodes and edges are well suited for representing
complex data with manifold relationships in a natural way.

Also, inter-model relationships can be expressed easily with
nodes and edges referencing related nodes of the graphs. As
another advantage we can use the theory of graph transfor-
mations to define modifications on the graphs. In the follow-
ing, the data structures, construction of consistency rules,
and the notion of consistency in this setting are presented.

3.1 Models as Triple Graphs
For using TGG in complex scenarios where two dependent
models are edited by different tools we create graphs from
these models (via tool wrappers) and denote one as source
and the other as target model. Operations on the models
performed by the respective tools are represented as graph
transformations. The data structure storing links between
inter-dependent models is called integration document which
is also modeled as graph.The framework creates an inte-
grated graph consisting of the three graphs to simplify spec-
ification of the triple rules and their application.

In the following, we want to use UML object diagrams to
represent typed graphs and to model triple rules as well.
The graph schemes, therefore, are modeled as UML class
diagrams. To be able to model integration scenarios, we
provide an extension of the UML meta-model [3] by stereo-
types. To illustrate the graph modeling, we use the example
in Figure 2 which shows the graph representation of the
UML class diagram, the VS Object model, and the integra-
tion document from the left situation of Figure 1 with only
one method object.

To model source and target graphs we use the stereotypes
Increment for nodes and Incr2Incr for edges. Source and tar-
get graphs have an underlying graph scheme equivalent to
the respective models’s meta-models. This means the graph
schemes of UML class diagrams and source code which we
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Figure 2: Triple graph as UML object diagram

want to maintain consistent do not differ much from the
meta-model of UML class diagrams specified by the OMG
in [24]. This makes sense, since they both reflect the struc-
ture of the system. In general, the graph schemes of the
models are different. The tool wrappers realize the concrete
type mapping, that is for example the concept of a Class
instance in the graph representation of the UML model is
mapped to an Ecore Class and that of the VS Object Model
is mapped to an instance of the type CodeClass. In Fig-
ure 2, we see that source and target graph contain objects
of concepts of the UML meta-model.

The integration document objects use the stereotype Link to
mark the links. Links refer to increments in source or tar-
get model via UMLLinks (instances of associations). The
increments have to be distinguished according to the graphs
they are contained in, either source or target graph. There-
fore, stereotypes for UMLLinks from links to increments ap-
pear twice, one for increments of the source and one for
increments of the target graph. This is indicated by suf-
fixes SrcIncr and TrgIncr of the stereotypes’ names. Depen-
dent on whether the increments play the role of a normal
or context increment, they are connected to a link via UM-
LLinks with stereotype toSrcIncr, toTrgIncr, toConSrcIncr, or
toConTrgIncr respectively. Increments may play the role of
so called context increments for a link when they define some
kind of existent-dependency for a link, i.e. a link relates in-
crements only if the context increments are connected to
these increments within the models.

The integration document also has an underlying graph
scheme which models the link types and how they are related
to classes of source and target graph schemes. In Figure 2,
we see that links of type ClassLink and AssocLink are rep-
resented which are used to relate classes or associations in
both models. In this example, the association (source) is
mapped to a property (target).

3.2 Consistency Rules as Triple Rules
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Figure 3: Triple rule (synchronous) creating an asso-
ciation a in a UML class diagram (left) and a corre-
sponding attribute b with the same name in a source
code (right)

As mentioned, the connections of a link to objects in both
graphs base on template specifications for corresponding
graph patterns. These are defined in triple rules which are
also modeled as object diagrams. To give an example, the
triple rule which defines the connection pattern of the asso-
ciation link from Figure 2 is shown in Figure 3.

The triple rule defines in the first place how to relate two
classes within a UML class diagram with an association
(source) and to simultaneously add in the source code (tar-
get) an attribute to the class corresponding to the associa-
tion’s source class whose type is of the class corresponding
to association’s target class.

The left-hand-side (LHS) of the rule is shown above and
specifies that the two classes in each model already exist and
are related to each other via links in the integration docu-
ment. The right-hand-side (RHS) shown below specifies the
situation after the rule has been applied meaning that the
association in the source graph, the attribute in the target
graph, the link in the integration document mapping both
onto each other, and the edges embedding these increments
in the existing graphs are created. This triple rule also spec-
ifies an attribute equation shown in the comment attached to
the new link. It states that the increments a and b have the
same names. The RHS is the template which declaratively
specifies the connection pattern for a consistent link.

A rule can also specify restrictions on attributes of the incre-
ments, for example the name of a class aClass could be re-
stricted by aClass == ’User’. If the restrictions or equations
appear on the LHS they restrict graph pattern matching
allowing only those increments to be matched which fulfill
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these constraints. If they appear on the RHS, the constraints
have to be fulfilled in any case. When there is no value spec-
ified within the rule such as in the triple rule shown above,
a dialog is prompted to enter a value.

Source
(UML Class Diagram)

Target
(Source Code)Integration Document

a.Name == b.Name

Operation2Operation_Triple_Rule ::

<<Increment>>
: Class

::=
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a : Operation
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Figure 4: Triple rule (synchronous) creating an op-
eration a in a UML class diagram (left) and a corre-
sponding operation b with the same name in a source
code (right)

As a further example, Figure 4 shows the triple rule which is
applied in the scenario for creating the methods getDBItem
and getFileItem in source and target graph and the links
between them.

Please note: if asynchronous rules are derived from triple
rules which have equations, attribute values are transferred
into the other model. For example, the forward transforma-
tion of the triple rule shown above sets the attribute’s name
to the association name (b.name := a.name), vice versa for
the backward transformation (a.name := b.name).

3.3 Definition of Consistency
TGG base on Pair Graph Grammars (PGG) [26]. Pratt de-
fined consistency of two graphs based on pair rules: ”Two
graphs are consistent iff both graphs can be created by syn-
chronously applying corresponding graph grammar rules on
corresponding nodes.”

Of course in real life scenarios a rule modeler has to model
the triple rules for two models edited by (as a general rule)
commercial tools and so it cannot be assumed that he spec-
ifies the complete TGG covering each possible change a tool
can make on one of its models and relates it to changes the
other tool should make so that the models remain consis-
tent. One can assume that the tools create valid models
according to the models’ meta-models so that inner-model
consistency must not be checked.

Although in practice we do not have a complete TGG we
can keep the definition of consistency of Pratt. We only
regard those structures in the models which can be created
by one of the triple rules. Other increments are ignored;
they also do not make the models inconsistent as there is
no triple rule that would define corresponding increments in
the other model.

4. INCONSISTENCY MANAGEMENT
Our tool performs the three tasks mentioned in [23]. In this
section, we only present the check and resolving strategies
for category 2 inconsistencies. A detailed description of the
consistency check and resolution of category 1 inconsisten-
cies can be found in [2].

The main issues we are dealing with are that we cannot
record the changes an external tool performs on a model and
also that we cannot assume that a rule modeler specified
for each operation on a model an equivalent operation on
a dependent model. So, instead of parsing the graph and
finding out the operations which were performed on a model
and to perform equivalent operations on a dependent model,
we decided to take only the already available triple rules into
account and those parts in the model which make a triple
rule inconsistent.

It is so, that a triple rule specifies declaratively in its RHS
the correspondences of two patterns in source and target
graph. Thus, if the rule is applied, there exist instances of
these patterns (subgraphs) in source and target graph and a
link exists in the integration document referencing the nodes
of these subgraphs. An inconsistency according to a triple
rule is, therefore, that the patterns do not match anymore
or that attribute conditions are violated. Thus, resolution
means to maintain the graphs so that a link referring to
nodes in source and target graphs is valid according to an
RHS of any triple rule, not necessarily the one which was
formerly applied.

It is important to note that a repair action is allowed to
change only nodes and edges that were originally created by
the applied rule. That does not hold for context increments.
Therefore, a repair action never causes new inconsistencies
for links referenced as context. But of course, other links
having a repaired link in their contexts could be damaged.

4.1 Inconsistency Check (Category 2)
For existing links we check if there were modifications on
their referenced increments by doing pattern matching using
the RHS of the triple rules applied before. Each link in
the integration document has an associated state. When a
link has been newly created by applying a rule, its state is
initially set to consistent. In the analysis, for each link it is
checked whether increments originally referenced by the link
are still present in source and target graphs. If the RHS of
the triple rule does not match any more due to modifications
of source or target graphs, the state of the link is changed
to damaged. For handling the inconsistency all reasons why
the link got damaged are collected during analysis. Here, all
possibilities for a link to be damaged are listed:

Increments deleted Increments of the source or target
graph which take part in a link have been deleted, result-
ing in dangling references of the link. As an example, an
attribute of a class could have been deleted.

Attribute values changed Attribute values of source or
target increments of a link have been changed so that at-
tribute conditions do not hold any more. This would be
the case if the attribute of a class in the source code has
been renamed resulting in an inconsistency of the Associa-
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tion2Attribute-rule because the name of the corresponding
association in the UML class diagram of that attribute and
the attribute’s name are no longer equal.

Edges deleted Edges of the source or target graph being
involved in a link have been deleted, so that the patterns on
both sides are no longer valid. For example, an attribute of
a class in the source code has got another type so that the
edge typeRef from the attribute to the old type is deleted.

Context damaged If a link gets damaged all links referring
to it as context get damaged, too. For example, a link L1
mapping an association onto an attribute refers to two links
as context links, i.e. those links mapping two classes in each
graph onto each other. If one of those links gets damaged,
L1 is damaged, too.

4.2 Resolution of Inconsistencies (Category 2)
We now present what can be done in general if damaged
links have been found and list in the following sections graph
transformation strategies. We call these strategies repair
types because we create concrete instances from these strate-
gies, repair actions, to repair a concrete damaged link with
specific damages. Applied to a damaged link, a repair action
brings the link back to a consistent state which means that
it resolves the inconsistency.

4.2.1 Delete all increments involved
The most primitive procedure is to delete the link and all
the increments on both sides, which are involved in the in-
tegration situation. It is obvious that this is suitable only in
situations where all increments of a link have been deleted
by the user in one of the graphs or where one of the main
increments has been deleted. If some increments of a link in
one of the graphs are deleted and others still exist, the dele-
tion could have been part of a restructuring activity, thus,
deleting all increments is not the reaction the user expected.
Still, it is a valid repair strategy, but one which should never
be executed without prompting the user before.

4.2.2 Remove the link and integrate again
The next simple possibility is to only delete the damaged link
and to leave the increments on both sides unchanged and to
make them available for other transformation rules. Most
of the time this also does not lead to the desired behavior
of the tool. The modifications resulting in the damaged
link were probably done on purpose. The link, although
damaged, may contain valuable information to be used, most
importantly, to determine which parts of the graphs may be
affected by the modification which damaged the link. For
example, in the scenario the Operation2Operation rule from
Figure 4 had been applied and the user rerouted the method
getDBItem from the class DataAccessObject to another class
DBAccess, then the rule did not match anymore. The edge
ownedOperation from the class DataAccessObject is missing.
But instead of deleting the link and all references the desired
repair action is to reroute the ownedOperation reference of
the corresponding method in the source code from the class
DataAccessObject to the class DBAccess.

4.2.3 Undo changes of the user

Another option is to restore consistency by removing the
cause for the inconsistency. For instance, missing incre-
ments or edges may be created. This option is desirable
only in those cases where the operation causing the damage
was carried out accidentally, because it would be undone.
For attribute values, the attribute conditions of the triple
rule can be used to propagate the change.

4.2.4 Define new rule
This is a trivial solution to handle a damage as for the new
situation a rule is defined (induced) and attached to the link.

4.2.5 Conserve the applied rule
As the alternatives to repair inconsistencies presented so far
are not very useful from the practical point of view, more
specific repair types [16] based on knowledge about the origi-
nal rules which created the links have to be considered. The
main priority when repairing links is to conserve the rule
that has been originally applied to create the link or to find
a similar one doing only small adaptations (see below).

Conserving the applied rule in general means to create a
situation where the damaged link refers to increments in
source and target graphs so that all required conditions of
that rule including graph pattern matching are fulfilled. As
there can be multiple reasons for a link to get damaged each
single damage has to be healed when trying to conserve the
applied rule. We present in the following sub-strategies to
heal a single occurrence of a damage of the same type, e.g. if
an increment is missing, then a strategy/action is to replace
it. If multiple increments are missing, then there are actions
for each increment to replace it. Of course all occurrences of
all damage types must be healed which results in building
actions of the same and different sub-strategies.

A repair can be done by changing or not changing source
and target graphs. Not changing means that only references
within the integration document are adapted assuming that
the user established a consistent state by himself. So, con-
serving the applied rule strategy exists in two variants. We
explain what has to be addressed when a rule should be con-
served with and without doing any changes on the graphs.

Conserve the applied rule (changing):

• Create increment If an increment is deleted it can
be recreated, thus, this (single) damage is removed, re-
sulting in an undo-like operation of the user’s changes.
Note, this is not a real undo such as in the Undo
changes repair type, because attribute values of the
recreated increment are not reestablished as before the
deletion of the increment.

• Create edge If an edge is deleted it can be recreated
as above. This also is not a real undo, because an edge
which was deleted due to the deletion of an incident
increment which is not part of the rule pattern is not
recreated by this repair.

• Propagate attribute value If an attribute value chan-
ged so that the condition of an attribute equation of
the applied rule does not hold, this repair type changes
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attribute values so that the violated attribute equa-
tions hold again. For example, in the scenario of Fig-
ure 1 the rule which maps two methods onto each other
is applied two times. It states that methods a from the
source and b from the target graph referred by a link
must have the same names, here getDBItem and get-
FileItem. The user afterwards changed both methods’
names in the UML model having the role of method a
to getItem, there are two possible actions: (i) b.name
:= a.name or (ii) a.name := b.name. The first would
correspond to a propagation but the system is not able
to determine which value (that of a or b) had changed
by the user, so it suggests both alternatives.

• Change attribute value according to restriction
If an attribute value is changed so that the condition of
an attribute restriction is violated, this repair changes
the attribute value so that the violated attribute re-
striction holds again. For example, if the restriction
is aClass.name == ’User’ and aClass.name differs from
this value, then the action aClass.name := ’User’ is pro-
posed. If the restriction is a.card < 10 and a.card is
greater than 10, then the action a.card := 10 - 0,1 is
proposed, where it must be said that the percentage
which is additionally subtracted can be configured by
the user. Note that, for a greater than (>) relation, a
percentage is added up.

• Include alternative context If increments and edges
of the context of a damaged link are missing, this re-
pair type adapts references in the integration docu-
ment from the damaged link to existing increments and
edges in source or target graph (in one step) to make
the context valid again for the damaged link. Nev-
ertheless, the repair type is allowed to reassign edges
from the non-context increments to the new context so
that finally changes in the graphs are made. This re-
pair is applied twice in the scenario of Figure 1 where
the method links first refer to the same context incre-
ment DataAccessObject in the source code and after the
repair to the alternative context increments DBAccess
and FileAccess, respectively.

Conserve the applied rule (not changing): Not doing
any changes on the graphs but to heal each single damage is
only possible for deleted increments and edges as they can
be replaced with already existing increments and edges by
adapting the references in the integration document. Vi-
olated attribute conditions cannot be reestablished as this
would mean to change at least one value in the graphs.

• Include alternative increment A deleted increment
can be replaced by an alternative increment which ex-
ists in the respective graph if it is not used by another
link. This increment must fulfill all conditions stated
in the triple rule, as for example attribute restrictions
or connections to other increments via edges.

• Include alternative edge A deleted edge is only a
cause for a damage if its two incident increments still
exist. If not, then this damage is handled by alter-
native increment (see above). To find an alternative
edge for the deleted one means that either one of the

incident increments or both are replaced with alter-
natives which exist in the graphs if they are not used
by another link. As for the alternative increment re-
pair type (see above) these increments have to fulfill
all requirements of the rule.

• Include alternative context This repair type is equal
to the changing version (see above) not being allowed
to do any change on the graphs. Thus, a valid context
is included only if it is already connected as required
to the non-context part of the link.

4.2.6 Apply a similar rule
The following repair types do not conserve the originally
applied rule but substitute it with a similar one.

Apply a subset rule (changing): A triple rule is a subset
rule of another triple rule if its RHS is a subset of the RHS
of the other rule. If an applied rule is inconsistent, one can
try to look for a subset rule which is still consistent in the
given situation. The applicability of a subset rule is likely as
a subset rule has less conditions which may not have been
affected by the modifications of the user. If there exists such
a subset rule which is not damaged, then increments which
not appear in the subset rule but by the damaged rule are
deleted. The situation after the repair is as if the subset rule
had been applied.

Apply another rule from the same rule group (chang-
ing): Two rules are in the same rule group if they are am-
biguous for a pattern in a graph which means the pattern
can be represented in a dependent graph in two ways. If an
applied rule is damaged it is likely to look for an alternative
rule of the same rule group which is applicable and only
do little adaptations to the graph; in case that some pre-
conditions for applicability of the rule are not fulfilled, their
validity can be enforced with small changes on the graph.
For example, required nodes and edges for the application
of a different rule can be created and nodes and edges of the
formerly applied rule which are not used by the alternative
rule can be deleted.

Apply another rule from the same rule group (not
changing): The same is possible without doing any changes
on the graphs.

Apply another rule keeping the main increments:
Like alternative rule repair, this repair action searches for
another possible rule which can be applied. But instead of
taking the whole pattern into account, it just searches for
source and target main increments, as a minimal require-
ment for an alternative rule application if they still exist.

5. IMPLEMENTATION
The strategies are implemented in a framework which was
built within the IMPROVE project (1997-2009) [21] at RWTH
Aachen University to rapidly construct consistency mainte-
nance tools [17] for specific models and editing tools.

The framework works tool- and model-independent on a
generic graph-based data structure; the model editing tools
are plugged in the framework by using wrappers which pro-
vide the required graph views on the models to the frame-
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work. Triple rules also base on the generic data structure
and have to be defined for each pair of models to main-
tain consistently. Parameterized by the rules the framework
is able to check, to categorize, and to maintain the consis-
tency incrementally, bidirectionally, and with the work of [2,
1] they operate interactively.

For concrete models specific repair actions (i.e. graph trans-
formations) for a damaged link are constructed after the
damage check at runtime. The repair actions represent al-
ternatives to make the link consistent again. They can be
selected and prioritized so that the framework can be em-
ployed for various models and various phases of the develop-
ment process with different requirements on resolution. We
focus on the implementation of repair actions here, how they
are built and executed.

A repair action is a concrete instance of a repair strategy
for a category 2 inconsistency of a damaged link realized as
graph transformation with a LHS and a RHS. The LHS and
RHS of a repair action are modeled with Pattern objects
which can be then interpreted at runtime by methods for
pattern search and transformation by a graph transforma-
tion engine.
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«adt»
RepairAction

-name
-repairType 
-matching
-conflicts

«adt»
RepairOption

-conflicts

«adt»
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-nodes
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GraphPatternHandling::Pattern

create, 
delete, 
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delete, 
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repairOptions

repairActions

Figure 5: Data structure to store repair actions and
options in the integration document

Figure 5 presents the data structure to store repair actions
in the integration document. We need store this informa-
tion there because of the interactivity of the tool. A user
can select among multiple options and can stop the tool
during consistency maintenance. The class Rule models the
application of a triple rule and is connected to the respective
link it has created. If a rule pattern no longer matches, a
set of RepairAction and RepairOption objects are created for
that rule. A RepairAction contains multiple Pattern objects:
one is searched (search), one models the remaining match-
ing subgraph (match), one defines the subgraph which is
going to create (create), one models the pattern of the sub-
graph to be deleted (delete), and one specifies the pattern
of the subgraph to be changed (change). We can say that
the search, match, delete, and change patterns form the LHS
and the the search, match, create, and change patterns form
the RHS. When repair actions are created pattern nodes and
edges must be added to the respective Pattern objects.

1 List<RepairAction> AlternativeNode(List<

RepairAction> ras, Pattern

rsPattern, Pattern dmgPattern) {

2 List<RepairAction> retRas = ras;

3 foreach (RepairAction ra in ras)

4 Pattern search = ra.GetSearchPattern();

5 Pattern create = ra.GetCreatePattern();

6 foreach(PatternNode patNode in

rsPattern.GetNodes())

7 if(dmgPattern.ContainsKey(patNode) &&

!rsPattern.IsContext(patNode)) {

8 //search alt. nodes

9 search.AddNode(patNode);

10 //Edges of alt. nodes

11 foreach (PatternEdge edge in

rsPattern.GetEdges(patNode))

12 if(!IntDocEdgeTypes.ContainsKey(edge

.type))

13 //search in model

14 search.AddEdge(edge);

15 else

16 //create in Int.Doc.

17 create.AddEdge(edge);

18 }

19 return retRas;

20 }

Figure 6: Creation of the repair action for searching
for alternative nodes (simplified, in C#)

When repair actions are constructed it is not known if they
really are applicable, i.e. if the search pattern has a match in
the graph. If a match is found, then a RepairOption object
is created which denotes a really applicable repair action.
All options are offered to the user. For each match of the
search pattern found by the graph pattern search engine, the
search pattern is enhanced with concrete matching node and
edges ids of the graph and is now part of one RepairOption
as matching. The repair option only references create, delete,
and change patterns of the corresponding repair action.

To construct a repair action for conserving the originally ap-
plied rule, the patterns are extended step-wise according to
the sub strategies. For example, the enhancement to search
for an alternative context bases on the patterns which are
enhanced with pattern nodes and edges to search for alter-
native nodes. Repair actions without sub strategies can be
constructed independently in one step and retrieve the pat-
tern of the rule which is still intact, the remainder pattern.

To demonstrate how repair actions are created we present as
examples the implementation of the alternative nodes and
context sub strategies. The methods describe how the differ-
ent pattern objects are enhanced to match alternative nodes
and an alternative context and replace the missing nodes and
damaged context of a link.

Figure 6 shows the method which retrieves as input parame-
ters a list2 of already created repair actions ras, the pattern

2Please note that creation of alternative edge repair is done
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of the rule rsPattern, and a damage pattern dmgPattern.
The damage pattern contains the missing nodes and edges
as well as those nodes which violate attribute conditions or
restrictions. In this method, all repair actions of ras are ex-
tended. Alternative nodes and edges for the missing nodes
and their incident edges are searched, i.e. they are added to
the search pattern (lines 8 to 14). When the current repair
action is applied all edges from the integration document to
the alternative nodes are created, i.e. those edges are added
to the create pattern (line 17).

Next, the repair actions are enhanced for searching for an
alternative context. The method shown in Figure 7 is the
changing (c) version and retrieves as input parameters the
repair actions ras of the previous step. In this method, each
repair action is doubled (line 7). One version (ra) searches
for an alternative context group of a missing context node
only in the graph of the missing node with pattern search.
Nodes of the context are only added to the pattern, if the
graph role is equal to the graph role of the missing node
(lines 21 and 22). The other version (ra2) searches for an
alternative context group in all three graphs with pattern
search2. Nodes of the context are all added to this pattern
(line 20). The edges of the alternative context are searched
in ra only if they belong to the same graph as the missing
context (line 27), ra2 searches all edges between the context
nodes (line 25). Edges from the context nodes which points
to other nodes in the same graph as the missing node are
searched in both versions (lines 28 to 30). Those in the other
graphs are created (line 32) and edges to the former context
are deleted (line 33) but only for ra2. The repair action ra

only reassigns edges within the integration document (lines
34 to 36).

To give an example, we present in Figure 8 the repair action
ra2 which reassigns the operation getDBItem to the other
class DBAccess which plays the role of the alternative con-
text here. The search (LHS) pattern consists of the remain-
ing graph with the current node ids. The nodes DataAcces-
sObj in source and target graph as well as the ClassLink node
between them are the context group which has to be replaced
as the ownedOperation edge between DataAccessObj and get-
DBItem in the source graph is missing. The search pattern
is extended by an additional context group, only edges be-
tween that nodes are added and the ownedOperation edge
in the source graph where the edge is missing. The nodes
and edges of the gluing graph K (K = LHS ∩ RHS) of the
LHS and the RHS are not changed. The create pattern is
the pattern RHS\K and the delete pattern is LHS\K and in
this example the edges in the integration document and the
target graph.

Generating repair actions at runtime is suitable because
they cannot be all modeled beforehand foreseeing all pos-
sible changes a user can make. But this approach also im-
plies performance problems when at runtime a set of repair
actions is generated, most of them not being applicable as
required, e.g., required nodes and edges of the search pattern
are not present in the graph.

Therefore, we optimized the process by introducing phases

before and that multiple repair actions are generated, i.e. 3e

where e is the number of missing edges.

1 List<RepairAction> AlternativeContext_c(

List<RepairAction> ras, Pattern

rsPattern, Pattern dmgPattern) {

2 List<RepairAction> retRas = ras;

3 foreach (RepairAction ra in ras) {

4 Pattern search = ra.GetSearchPattern();

5 Pattern create = ra.GetCreatePattern();

6 Pattern delete = ra.GetDeletePattern();

7 RepairAction ra2 = new RepairAction();

8 retRas.Add(ra2);

9 Pattern search2 = new Pattern(search);

10 Pattern create2 = new Pattern(create);

11 Pattern delete2 = new Pattern(delete);

12 ra2.SetSearchPattern(search2);

13 ra2.SetCreatePattern(create2);

14 ra2.SetDeletePattern(delete2);

15
16 foreach (PatternNode patNode in

rsPattern.GetNodes())

17 if(dmgPattern.ContainsKey(patNode) &&

rsPattern.IsContext(patNode)) {

18 Pattern ctxtGroup = rsPattern.

GetContextGroup(patNode);

19 foreach (PatternNode ctxtNode in

ctxtGroup) {

20 search2.Add(ctxtNode);

21 if(ctxtNode.graphRole.Equals(patNode

.graphRole))

22 search.Add(ctxtNode);

23 foreach (PatternEdge edge in

rsPattern.GetEdges(ctxtNode))

24 if (ctxtGroup.ContainsKey(edge.

GetSourceNode() && ctxtGroup.

ContainsKey(edge.

GetTargetNode()) {

25 search2.AddEdge(edge);

26 if (edge.graphRole.Equals(patNode.

graphRole))

27 search.AddEdge(edge); }

28 else if (edge.graphRole.Equals(

patNode.graphRole)) {

29 search.AddEdge(edge);

30 search2.AddEdge(edge); }

31 else {

32 create2.AddEdge(edge);

33 delete2.AddEdge(edge);

34 if(IntDocEdgeTypes.ContainsKey(

edge.type))

35 create.AddEdge(edge);

36 delete.AddEdge(edge);}}}}

37 return retRas;

38 }

Figure 7: Creation of the repair action for searching
for an alternative context (simplified, in C#)
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Figure 8: Repair action which reassigns the method
to another class

where only repair actions for a set of predefined repair types
are generated and tested. Only if no valid repair action could
be found in one phase, repair actions of another set of repair
types are tested in the next phase. This proved acceptable
runtime behavior. The sets of repair types and the order of
their execution can be configured by the user. Additionally,
a set of repair types can be specified which should be always
tested.

6. RELATED WORK
There are many approaches handling inconsistencies with
graph transformations. One is, only delete and attribute
propagations or link deletions are supported as with our ap-
proach, e.g. in [14, 37, 13]. Another is, inconsistent situ-
ations are defined as graph patterns which are searched in
the host graph and graph transformations for their resolu-
tion are specified such as in [15, 38, 10, 35, 34, 7] to name a
few. This procedure is very laborious and will never cover all
cases. Additionally, [37] supports the completion of a con-
sistency pattern which is analogous to the changing version
of the rule conserving strategy.

Since not all kinds of inconsistencies like behavioral inconsis-
tencies and resolution rules can be expressed easily as graph
transformation rules, there are similar approaches [18, 36,
33] which use logic-based rules to detect and resolve inconsis-
tencies exemplified with UML class and sequence diagrams.
Also in these approaches, each inconsistency and each reso-
lution has to be defined in advance.

A similar dynamic approach is proposed by [22, 6, 5] within
a repair framework where consistency rules are expressed
by first order logic formulae. In contrast to the other ap-
proaches, repairs are fully generated from these formulae.
For a violated formula a set of sets of repair actions is gen-
erated, each set of repair actions representing an alternative.
A repair action adds, deletes, or changes one model to fix
the violated formula or subformula. The alternatives are
presented to the user who selects one for execution. This

approach is similar to ours, but differs in some ways: the
generated repair actions cannot create model elements and
the modifications the user had done on one model are known
and used for the generation. Thus, this generation approach
is not immediately ready for inconsistency resolution of mod-
els which are edited by external tools.

7. CONCLUSIONS
In this paper, novel strategies for resolving inconsistencies
between graph-based models taking into account only con-
sistency rules specified as triple rules and the damaged sub-
graphs are presented. The operations which were performed
on a model and lead to the inconsistencies are not consid-
ered as it is assumed that the models are edited by external
tools. Also, resolution is done on request, thus tolerating in-
consistencies. A main principle in resolving inconsistencies
presented here is to conserve the applied rule or to apply a
similar one and do only small adaptations. As discussed, we
think that this is a good option in practice. Not presented in
this paper, but nevertheless mentionable is that based on the
presented strategies multiple alternative repair actions are
derived for one damaged link, even multiple repair actions
for the strategy to conserve the applied rule or to apply a
similar one. Not all are applicable, i.e. required increments
are not available, so that only applicable repair actions are
suggested to the user. In the end, the user picks the repair
action which fits best. This should not be decided by the
tool.
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ABSTRACT
Models undergo a variety of transformations throughout de-
velopment. One of the key transformations is merge, used
when developers need to combine a set of models with re-
spect to the overlaps between them. A major question about
model transformations in general, and merge in particular, is
what consistency properties are preserved across the trans-
formations and what consistency properties may need to be
re-checked (and if necessary, re-established) over the result.
In previous work [18], we developed a technique based on
category-theoretic colimits for merging sets of inter-related
models. The use of category theory leads to the preservation
of the algebraic structure of the source models in the merge;
however, this does not directly provide a characterization
of the (in)consistency properties that carry over from the
source models to the result, because consistency properties
are predominantly expressed as logical formulas. Hence, an
investigation of the connections between the “algebraic” and
“logical” properties of model merging became necessary.

In this paper, we undertake such an investigation and use
techniques from finite model theory [9] to show that the use
of colimits indeed leads to the preservation of certain logical
properties. Our results have implications beyond the merge
framework in [18] and are potentially useful for the broad
range of techniques in the graph transformation and alge-
braic specification literature that use colimits as the basis
for model manipulations.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Design, Verification

Keywords
Inconsistency, Merge, Logical Preservation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
In the past several years, we have been studying the prob-

lem of model integration, particularly in situations where the
models are originating from distributed sources of informa-
tion. Many activities in model-based development fall under
the umbrella of integration. These include (1) merging, used
to build a global view of a set of overlapping perspectives
(e.g., [23, 20, 18, 10]); (2) composition, used to assemble a
set of autonomous but interacting components that run se-
quentially or in parallel (e.g., [2, 5, 6]); and (3) weaving, used
in aspect-oriented development to incorporate cross-cutting
concerns into a base system (e.g., [22]).

Our position towards the integration problem has been
that the integration operators (e.g., merge, compose, weave)
must tolerate inconsistency. That is, the operators must
work for any given set of models, even when the models are
inconsistent. This position is motivated by two well-known
observations: First, immediate resolution of inconsistency
can be disruptive in projects where ambiguities and conflicts
tend to occur frequently [11]. Second, maintaining consis-
tency at all times can be counter-productive because it may
lead to premature commitment to design decisions that have
not yet been sufficiently analyzed [12].

In light of our position, it is important to understand how
different consistency properties are affected by the integra-
tion operations. Specifically:

• If all the source models are consistent with respect to
a given consistency property, will the integrated model
be consistent with respect to that property as well?

• If there is an inconsistency in the source models, will
the inconsistency necessarily carry over to the inte-
grated model?

Answering the first question is interesting to enable com-
positional reasoning about consistency. Answering the sec-
ond question is useful for understanding the nature of an
inconsistency. In particular, inconsistencies that are due to
incomplete information in the individual source models can
be automatically resolved in the integrated models when the
source models are complementary and address each other’s
areas of incompleteness. For example, an abstract class with
no descendants in a UML class diagram might be seen as in-
consistent. But this class might be inherited from in other
models and hence the overall view might still be consistent.
In contrast, cyclic inheritance in a UML class diagram can-
not be resolved in the integrated model (unless the inte-
grated model omits information from the source models).
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Since consistency rules are often described in logical lan-
guages (e.g., first order logic), we are interested in study-
ing how different integration operators preserve the logical
properties of models. In general, property preservation is
a powerful tool for reasoning about model transformations.
The main question that property preservation tackles is the
following: If a property (formula) ϕ in some logic holds over
a model M , will ϕ also hold over a model M ′ derived from
M via some transformation?

In this paper, we discuss the logical property preservation
characteristics of our merge operator in [18]. The merge op-
erator is based on category theory which has been widely
used as a theoretical basis for characterizing model merg-
ing. In a categorical setting, merge is typically performed
by computing a colimit – an algebraic construct for combin-
ing a set of objects interrelated by a set of mappings. While
colimits provide an effective and mathematically precise way
for merge, their pure algebraic characterization is not di-
rectly applicable for reasoning about the logical properties
of model merging. Specifically, given a property ϕ expressed
in a particular logic, one cannot readily determine from the
definition of colimit whether ϕ is preserved from the source
models to the merged model.

We use techniques from finite model theory [9] to show
that colimits indeed preserve a certain class of logical prop-
erties. The logical language we use as the basis for our
work is first order logic extended with least fixpoints. Ex-
tension with fixpoints is important, because standard first
order logic cannot express properties that require the com-
putation of reachability. For example, acyclic inheritance
for UML class diagrams is not expressible in standard first
order logic. Our results have implications beyond our merge
framework in [18] and are potentially useful for the broad
range of techniques in the graph transformation [16] and al-
gebraic specification [1] communities that use colimits as the
basis for model manipulations.

The remainder of this paper is structured as follows: In
Section 2, we provide background information on our merge
algorithm and present the logical preliminaries for our work.
In Section 3, we describe our general logical preservation re-
sults for colimits; and in Section 4, we use these general
results to reason about the preservation of some logical ex-
pressions that are frequently used in consistency rules. We
conclude in Section 5 with a summary and directions for
future work.

2. BACKGROUND

2.1 Structural Model Merging
We first briefly review our merge operator. For more

information, see [18]. The operator hinges on three ab-
stractions: models, mappings, and interconnection diagrams.
Each model is described as a graph, and each mapping – as
a binary relation over two models equating their correspond-
ing elements. Mappings preserve type information, i.e., they
do not equate elements that have different types. Further,
they preserve structure, i.e., if a mapping R maps an edge
e to an edge e′, it must also map the source and target of e
to the source and target of e′, respectively.

The third abstraction, the interconnection diagram, cap-
tures a set of models and a set of known or hypothesized
mappings between them. An example interconnection di-
agram is shown in Figure 1. In this example, M1, . . . ,M4

A

D

A

B

E

M1

D

B

E

B

C

E

M3
R1 R2

R3
R4

An equivalence class

M2

M4

Figure 1: Example interconnection diagram

A

B

Merge

ED

C

Figure 2: Merge of the diagram in Figure 1

are simple UML class diagrams with their overlapping parts
specified through four mappings, R1, . . . , R4 (depicted us-
ing directed dashed lines). A simpler example with just
two models, M1,M2, and one mapping, R, is shown in Fig-
ure 3(a). A third example is given in Figure 4(a), where the
shared parts of two models, M2,M3, are captured by a third
model M1 and two mappings R1, R2.

The input to the merge algorithm is an interconnection di-
agram D = 〈M1, . . . ,Mi, R1, . . . , Rj〉. The algorithm works
by unifying elements in M1, . . . ,Mi that fall into the same
equivalence class induced by R1, . . . , Rj . As an example,
we have delineated by thin dashed lines one of the several
equivalence classes in Figure 1. Note that each unmapped
element in the input models falls into a distinct equivalence
class of its own.

For convenience, in the example shown in Figure 1, we
used a consistent vocabulary for naming the elements of
M1, . . . ,M4, hence definingR1, . . . , R4 based on name equal-
ities. In general, models may not have a common vocabu-
lary, and mappings are not necessarily based on vocabulary
similarities (e.g., see the examples in Figures 3(a) and 4(a)).

The merged model has exactly one element corresponding
to each equivalence class. Since mappings denote equality
of mapped element pairs and hence are symmetric, the di-
rectionality of mappings is ignored in the computation of
equivalence classes.

Figure 2 shows the resulting merge for the interconnec-
tion diagram of Figure 1. The merge provides interesting
insights about how consistency properties can be broken
across merge. For example, we may have consistency rules
that check for multiple or cyclic inheritance in UML class
diagrams. Obviously, these rules are satisfied over the in-
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dividual source models in Figure 1, but the global view of
the system (i.e., the merge) is inconsistent. In particular,
in Figure 2: B has two parents; and B, C, E form a cycle.
In Section 4, we provide a systematic explanation of what
properties of the source models carry over to the merge and
what properties do not.

2.2 Logical Background
First Order (FO) logic is one of the most commonly used

logical languages for expressing consistency rules [11] and
is used as the basis for our work here. FO by itself is not
expressive enough to describe properties that involve reach-
ability or cycles. To address this limitation, one can add
to FO a least fixpoint operator, obtaining the least fixpoint
logic (LFP) [9]. Below, we first formally define the notion
of relational structure and FO. We then define the concept
of least fixpoint and show how FO can be extended into
LFP. Our exposition follows the standard approach in finite
model theory (e.g., see [9]).

Definition 2.1 (relational structure) A (relational) struc-
ture is an object A = (A,R1, . . . , Rm), whereA is a nonempty
set, m is a natural number, R1, . . . , Rm are abstract relation
symbols with associated arities k1, . . . , km (nonnegative in-
tegers), and each Ri is a ki-ary relation on A.

The set A is called the universe of A. The sequence of rela-
tion symbols R1, . . . , Rm together with corresponding arities
k1, . . . , km comprise the vocabulary of A. We usually denote
a vocabulary by σ. Relation RA

i is called the interpretation
of a relation symbol Ri in A.

FO formulas in a vocabulary σ are built up from atomic
formulas using negation, conjunction, disjunction, and exis-
tential and universal quantification:

ϕ ::= x = y | R(x1, . . . , xn) | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |

∃xϕ(x) | ∀xϕ(x)

In the above, x, y and x1 . . . , xn are variables, R is an
n-ary relation symbol in σ, and ϕ1 and ϕ2 are formulas.

Given a set U , let P(U) denote its powerset. A set X ⊆ U
is said to be a fixpoint of a mapping F : P(U) → P(U) if
F (X) = X. A set X ⊆ U is a least fixpoint of F if it is
a fixpoint, and for every other fixpoint Y of F , we have
X ⊆ Y . The least fixpoint of F is denoted by lfp(F ). Least
fixpoints are guaranteed to exist only if F is monotone. That
is,

X ⊆ Y implies F (X) ⊆ F (Y ).

We now add a least fixpoint operator to FO. Suppose
we have a vocabulary σ, and an additional relation symbol
R 6∈ σ of arity k. Let ϕ(R, x1, . . . , xk) be a formula with
vocabulary σ ∪ {R}. For a structure A with vocabulary σ,
the formula ϕ(R, ~x) yields a mapping Fϕ : P(Ak) → P(Ak)
defined as follows:

Fϕ(X) = {~a | A |= ϕ(X/R,~a)}

The notation ϕ(X/R,~a) means thatX is substituted for R
in ϕ. More precisely, if A′ is a (σ∪{R})-structure expanding
A, in which R is interpreted as X, then A′ |= ϕ(~a).

To ensure that Fϕ is monotone, we impose certain restric-
tions. Given a formula ϕ that may contain a relation symbol

R, we say that an occurrence of R is negative if it is under
the scope of an odd number of negations, and positive, oth-
erwise. We say that a formula is positive in R if there are no
negative occurrences of R in it, i.e., either all occurrences of
R are positive, or there are none at all.

Lemma 2.2 [3] If ϕ(R, ~x) is positive in R, then Fϕ is mono-
tone.

Definition 2.3 (least fixpoint logic) [9] The least fixpoint
logic (LFP) extends FO with the following formula building
rule:

• if ϕ(R, ~x) is a formula positive in R, where R is k-ary,
and ~t is a tuple of terms, where |~x| = |~t| = k, then

[lfpR,~xϕ(R, ~x)](~t)

is a formula, whose free variables are those of ~t.

The semantics is defined as follows:

A |= [lfpR,~xϕ(R, ~x)](~a) iff ~a ∈ lfp(Fϕ).

Example 2.4 (reachability) Consider graphs whose edge
relation is E, and let

ϕ(R, x, y) = E(x, y) ∨ ∃z (E(x, z) ∧R(y, z)) .

Reachability, i.e., the transitive closure of E, is characterized
by the formula

ψ(x, y) = [lfpR,x,yϕ(R, x, y)](x, y).

That is, ψ(a, b) holds over a graph G iff there is a path from
a to b in G.

2.3 Homomorphisms and Preservation of
Logical Properties

Our merge framework embeds each source model into the
merge through a homomorphism. The existence of these
homomorphisms leads to the preservation of certain consis-
tency properties. Below, we review the theoretical results
underlying our discussion of property preservation in Sec-
tion 3. We begin with a definition of homomorphism:

Definition 2.5 (homomorphism) Let A = (A,RA
1 , . . . , R

A
m)

and B = (B,RB
1 , . . . , R

B
m) be structures in the same vocabu-

lary. A homomorphism from A to B is a function h : A→ B
such that h(RA

i ) ⊆ RB
i , i.e., if (a1, . . . , aki) ∈ RA

i then
(h(a1), . . . , h(aki)) ∈ R

B
i for every 1 ≤ i ≤ m.

The first result about property preservation under homo-
morphisms, dating back to the 1950’s, is the Los-Tarski-
Lyndon Theorem:

Theorem 2.6 (homomorphism preservation theorem)
(e.g., see [14, 15]) A first order formula is preserved under
homomorphisms on all structures (finite and infinite) if and
only if it is equivalent to an existential positive formula, i.e.,
a formula without negation and universal quantification.

The existential positive fragment of FO is denoted ∃FO+.
For our purposes, we are interested in finite structures only,
and like many classical mathematical logic results that fail
in the finite case (e.g., compactness), there is the danger
that the above result may fail as well when restricted to
finite structures. Fortunately, this is not the case.
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Theorem 2.7 (h. p. t. in the finite) [15] A first order
formula is preserved under homomorphisms on finite struc-
tures if and only if it is equivalent to an ∃FO+ formula.

The forward direction of the if-and-only-if (i.e., sufficiency)
in the above result can be extended to the existential posi-
tive fragment of LFP, denoted ∃LFP+.

Lemma 2.8 Every ∃LFP+ formula is preserved under ho-
momorphisms on finite structures.

A proof of the above lemma is provided in the appendix.
The lemma is the basis for the results we present in Sec-
tion 3.

3. GENERAL PRESERVATION RESULTS
Our merge framework offers three key features [18]:

F1 Merge yields a family of mappings, in our case graph
homomorphisms, one from each source model onto the
merged model. This feature ensures that the merge
does not loose information, i.e., it represents all the
source models completely.

F2 The merged model does not contain any unmapped
elements, i.e., every element in the merged model is
the image of some element in the source models. This
feature ensures minimality, i.e., the merge does not
introduce information that is not present in or implied
by the source models.

F3 Merge respects the mappings in the source system, i.e.,
the image of each element in the merged model remains
the same, no matter which path through the mappings
in the source system one follows. This feature ensures
non-reduandancy. More precisely, if a concept appears
in more than one source model, only one copy of it
appears in the merged model.

From F1 and Lemma 2.8 (in Section 2.3), it follows that
the result of our merge procedure preserves the existential
positive fragment of LFP.

Theorem 3.1 If an existential positive LFP formula ϕ is
satisfied by some source model M , any merge in which M
participates satisfies ϕ as well.

By F2 and the above theorem, we obtain the following
result regarding preservation of universal properties.

Theorem 3.2 Let ϕ(x) be an existential positive LFP for-
mula with a free variable x. If the formula ψ = ∀xϕ(x) is
satisfied by all the source models, ψ is satisfied by any merge
of the models as well.

Notice that Theorem 3.2 allows the introduction of only
one universal quantifier. To gain intuition on what happens
when additional universal quantifiers are introduced, con-
sider the system in Figure 3(a) and let the relation E(x, y)
denote the graph edge relation. Both models in Figure 3(a)
are complete graphs and hence satisfy the property
∀x∀y Node(x) ∧ Node(y) ⇒ E(x, y) 1. However, the prop-
erty is violated over the resulting merge shown in Figure 3(b),

1The property uses implication and hence has negation. But
the negation can be resolved, because every element in the
universe that is not a node is an edge. Therefore, the prop-
erty is equivalent to ∀x∀y Edge(x) ∨ Edge(y) ∨ E(x, y).

because there is no edge from node a to node d and vice
versa. The general observation here is that, when there is
more than one universal quantifier, universally quantified
variables can be assigned values from non-shared parts of
different source models. In such a case, property satisfac-
tion over the individual source models may not extend to
the merge.

Currently, we do not know whether F3 leads to further
property preservation results. This is an issue that we plan
to investigate in future work.

4. PRESERVATION OF (IN)CONSISTENCY
In previous work [19], we identified three general types of

expressions commonly used in structural consistency prop-
erties. These are:

• Compatibility expressions, used for ensuring compati-
bility of the type of an edge with the types of its end-
points.

• Multiplicity expressions, used for defining a minimum
and a maximum number for edges of a given type in-
cident to a node.

• Reachability expressions, used for checking existence of
paths of edges of a given type between two nodes.

Below, we use results of Section 3 to reason about the
preservation of these expressions.

Compatibility Properties. Preservation of compatibility prop-
erties can be established directly through algebraic means,
but it is interesting to see if the same can be done through
logical means. For example, in a class diagram, an edge of
type “implements” must relate a class to an interface; other-
wise, the diagram would not be well-formed. This property
can be formalized as follows:

C1 = ∀e (Edge(e) ∧ Type(e, “implements”) ⇒
Compatibleclass,interface(e))

where Edge is the set of edges of the graph representing
a class diagram, Type is a binary relation between the set
of edges and different types of relations between classes,
and Compatibleclass,interface(e) is a constraint that verifies
whether the source and target nodes of edge e are of type
class and interface, respectively. The general form of this
constraint can be formalized using an existential positive
formula as follows:

Compatibleα,β(e) = ∃n (∃m (Source(e, n) ∧ Target(e,m) ⇒
Type(n, α) ∧ Type(m,β)))

where Source and Target are binary relations, respectively
giving the source and target node for a given edge.

The sub-formula Type(e, “implements”) of C1 appears in
negated form, but the negation can be resolved, knowing
that (1) the set of types is fixed and, (2) every element has
a type. More precisely, if the set of types is {t1, . . . , tn}, the
formula ¬Type(e, t`) can be replaced with

W
i6=` Type(e, ti).

Hence, by Theorem 3.2, C1 is preserved.

Multiplicity Properties. One can show through simple counter-
examples that none of the following lift from the source
models to the merge:
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• There exists at least c elements satisfying ϕ.

• There exists exactly c elements satisfying ϕ.

• There exists at most c elements satisfying ϕ.

It is easy to see why the “exactly” and “at most” cases
do not get preserved, noting that merge normally has more
information than any of the source models. To understand
why the “at least” case is not preserved, note that homo-
morphisms (and functions as well) are not necessarily one-
to-one, and can therefore shrink the number of elements
satisfying a property. For example, consider the system of
models in Figure 4(a) and its merge in Figure 4(b). For sim-
plicity, the models are discrete graphs, i.e., sets, and their
mappings are functions. Although M1,M2,M3 all satisfy
the property “there exists at least three (distinct) nodes”,
the merge has only two nodes, hence violating the property.
It is important to mention that the flexibility to fuse to-
gether multiple elements of the same source model is not an
undesirable feature and is indeed valuable when one needs
to perform an abstraction during merge [7].

Reachability Properties. An interesting consequence of The-
orem 3.1 is the preservation of paths in the merge. Recall
that we gave a formalization for the reachability property
in Example 2.4. To see how this can be used for reasoning
about consistency, consider the following consistency rule
over class diagrams: “Every abstract class must have a con-
crete implementation”. This rule is formally expressed as
follows:

C2 = ∀c ((Type(c, “class”) ∧ Abstract(c)) ⇒
∃c′(Concrete(c′) ∧Reachableextends(c

′, c)))

where Reachableextends(x, y) holds iff a path from x to y

made up of edges of type “extends” exists. Using the argu-
ment we gave when discussing preservation of compatibility
properties, we know that the negation of Type(c1, ”class”)
can be resolved. Further, ¬Abstract(c1) can be replaced with
a positive property, say, Concrete(c1). It now follows from
Theorem 3.2 that C2 is preserved.

Note that our results can be used for reasoning about
preservation of inconsistency as well. For example, consider
the following rule:

C3 = ∃c ((Type(c, “class”) ∧Reachableextends(c, c)))

This rule holds over a class diagram M when the inher-
itance hierarchy in M is cyclic, i.e., M is inconsistent. By
Theorem 3.1, we can conclude that any merged model that
has M as a source model satisfies C3 as well, and hence is
also inconsistent.

5. CONCLUSION
In this paper, we showed that the use of algebraic colimits

for model merging leads to the preservation of certain logical
properties. We used our results to formally reason about the
preservation of consistency properties across merge.

Based on our recent survey of existing model merging
techniques [17], algebraic theories, including category the-
ory, lattice theory, and formal concept analysis, are increas-
ingly being used for characterizing model integration prob-
lems. What makes these theories particularly attractive is
the level of abstraction to which they lead, allowing the
merge process to be described in a flexible and highly generic
way. At the same time, one must account for the fact that
merge is often an intermediate step for activities such as be-
havioural synthesis [23, 21], reasoning over global behaviours
of systems [4], and data integration and exchange [8, 13].
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To facilitate these activities, it is crucial to be able to rea-
son about the preservation of semantic properties (including
consistency properties) of the source models in merge. Do-
ing so requires establishing proper connections between the
algebraic techniques used in model integration and the log-
ical techniques used in the activities named above. This is
a non-trivial task but is an essential step toward making
model integration more effective in practice.

For future work, we would like to provide a full logical
characterization of colimits. In particular, the logical im-
plications of F3, described in Section 3, is unknown to us
at the moment and need to be revisited in the future. Fur-
ther, it may be possible to trade off development flexibility
in favour of a broader class of preserved properties, e.g., by
using more constrained mappings for relating models, or by
placing restrictions on the patterns used for interconnect-
ing the models. We leave an elaboration of these topics to
future investigation. Lastly, we would like to explore the ap-
plication of our results for checking the consistency of model
manipulations in graph transformation and algebraic speci-
fication approaches that are based on colimits.
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APPENDIX
A. PROOF FOR LEMMA 2.8

Let A = (A,RA
1 , . . . , R

A
m) and B = (B,RB

1 , . . . , R
B
m) be a

pair of relational structures over vocabulary σ = (R1, . . . , Rm).
Let h : A → B be a homomorphism. We show that for every
ϕ ∈ ∃LFP+ and for every ~a ∈ Ak

A |= ϕ(~a) ⇒ B |= ϕ(h(~a))

where h(~a) = (h(a1), . . . , h(ak)).
The proof for ϕ ∈ ∃FO+ ∩ ∃LFP+ follows from Theo-

rem 2.7. Below, we provide a proof for least fixpoint formu-
las.

Let ϕ(~x) = [lfpR,~yα(R, ~y)](~x). By the definition of lfp,
for every structure A, the formula ϕ yields a mapping Fα,A :
P(Ak) → P(Ak) defined as follows:

Fα,A(X) = {~a | A |= α(X/R,~a)}

By Definition 2.3 and Knaster-Tarski’s fixpoint theorem, for
every ~a ∈ Ak we have:

~a ∈
∞[

i=0

F i
α,A(∅) ⇔ A |= [lfpR,~yα(R, ~y)](~a)

We first prove by induction that h(F i
α,A(∅)) ⊆ F i

α,B(∅).

Base case: Let ~a ∈ Fα,A(∅). Then, A |= α(∅,~a). Since A is
a substructure of B by h and since h(∅) = ∅, we have
B |= α(∅, h(~a)). Thus, h(~a) ∈ Fα,B(∅).

Inductive step: Let ~a ∈ F i
α,A(∅). Then, A |= α(F i−1

α,A (∅),~a).
Since A is a substructure of B by h, we have B |=
α(h(F i−1

α,A (∅)), h(~a)). Thus, h(~a) ∈ Fα,B(h(F i−1
α,A (∅))).

By the inductive hypothesis and since Fα,B is mono-
tone, h(~a) ∈ F i

α,B(∅).

Thus,

h(
S∞

i=0 F
i
α,A(∅)) ⊆

S∞
i=0 F

i
α,B(∅) (1)

Therefore,
A |= ϕ(~a) ⇔
(By assumption ϕ(~a) = [lfpR,~yα(R, ~y)](~a))
A |= [lfpR,~yα(R, ~y)](~a) ⇔
(By Definition 2.3 and Knaster-Tarski’s Theorem)
~a ∈

S∞
i=0 F

i
α,A(∅) ⇔

(Since h is homomorphism)
h(~a) ∈ h(

S∞
i=0 F

i
α,A(∅)) ⇒

(By (1))
h(~a) ∈

S∞
i=0 F

i
α,B(∅) ⇔

(By Definition 2.3 and Knaster-Tarski’s Theorem)
B |= [lfpR,~yα(R, ~y)](h(~a)) ⇔
(By definition of lfp)
B |= ϕ(h(~a))
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ABSTRACT
During software modeling, engineers are prone to making
mistakes. State-of-the-art tool support can help detect these
mistakes and point to inconsistencies in the model. They
even can generate fixing actions for these inconsistencies.
However state-of-the-art approaches process inconsistencies
individually, assuming that each single inconsistency is a
manifestation of an individual defect. This paper presents
our vision of the next steps in inconsistency resolution. We
believe that inconsistencies are merely expression of defects.
That is, inconsistencies highlight situations under which de-
fects are observable. However, a single defect in a software
model may result in many inconsistencies and a single in-
consistency may be the result of multiple defects. Incon-
sistencies may thus be related to other inconsistencies and
we thus believe that during fixing, one should consider the
clusters of such related inconsistencies. The main benefit
of clustering inconsistencies is that it becomes easier to de-
tect the defect the bigger the cluster. This paper discusses
the idea in principle, provides some qualitative aspects of its
benefit, and gives an outlook on how we plan to realize our
vision.

Categories and Subject Descriptors: I.6.4 Simulation
and Modeling: Model Validation and Analysis

General Terms: Algorithms, Human Factors, Verification.

Keywords: User Guidance, Grouping and Clustering, In-
consistencies

1. INTRODUCTION
C. W. Johnson and C. Runciman already wrote in 1982 [6]

“It is important to distinguish between an error diagnosis
and error reporting. Correct error diagnosis must rely upon
the programmer as it may depend upon intentions that are
not expressed in his program. The compiler’s job is correct
error reporting using a form and content of reports most
likely to help the programmer in error diagnosis. We can
compare error reports to the symptoms of a sick patient:
the location at which the error is detected is not necessarily
its source.”

This is analogous to the modeling world, where incon-
sistencies are the symptoms (rules and/or constraints that
are violated) which are caused by defects (the sources of
symptoms that need fixing) in the model. It is thus the
job of the designer to identify the defects by exploring the
choices for fixing the inconsistencies – one of these choices (if
complete) for each inconsistency inevitably must involve fix-
ing a defect. Thus, inconsistencies are the sheer symptoms

of a defect, but usually involve other model elements that
when changed could also resolve the inconsistency. In ac-
cordance, fixing inconsistencies individually could mean fix-
ing the symptoms only but not the defects (i. e., much like
temperature-lowering medication merely “fixes” the symp-
tom – the fever – but not the cause – an infection). Much
like a good doctor attempts to identify all symptoms about
a sickness to then hypothesize about the cause, a good soft-
ware modeler should identify relationships among inconsis-
tencies to reason about the cause(s) (defects) for these incon-
sistencies. Perhaps a key difference here: software models
typically contain many defects.

A lot of research has been conducted to avoid and help
detect and correct inconsistencies. The issue that inconsis-
tencies are not self-contained is largely ignored in literature
but of essential importance, it is far more important to fix
the cause than just the symptoms. After all, the goal of en-
gineers is not just to resolve one inconsistency at a time but
in the end to get a consistent model. In order to get a consis-
tent model, all defects have to be resolved. Of course some
inconsistencies can only be resolved by fixing the underlying
defects, but those defects often cause additional inconsisten-
cies at other locations. In certain situations this even could
be reversed, meaning that several defects cause the same
inconsistency. An example for such an situation would be
a requirement change in a already consistent model. This
requirement change could require a set of model changes con-
flicting with the present requirements. As a consequence the
first change would introduce an inconsistency without being
the defect itself, instead the other model elements that are
required to be changed are the defects. This also relates
to the need of tolerating inconsistencies [1], since prevent-
ing them in this case would significantly change the typical
work flow. So the challenge lies in determining where the
defects are located and how to fix them, not just their symp-
toms, whilst not being too concerned with not causing new
inconsistencies since they could be required to achieve the
engineer’s goals.

We present our vision and proposed approach of how to
exploit interrelations between inconsistencies for resolving
them in this paper. It is our believe that using this informa-
tion will result in fewer, concrete fixes and provide guidance
to engineers for locating the defects. Additionally we ad-
dress open issues and discuss steps that in our opinion have
to be taken to provide some insights in the qualitative as-
pects of this approach. However we are ignoring techniques
for including semantic analysis of constraints and generelly
information on how the inconsistencies were created for the
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Figure 1: Several Inconsistencies in an UML model

of a Light and a Switch

time being, at this point we just plan to investigate if incon-
sistencies are related and how this fact can be used to our
advantage before combining it with other technologies.

This paper is structured as follows: In Section 2 we de-
scribe the scenario and problem we address. This is followed
by the vision of how we want to tackle the problem in Sec-
tion 3. In Section 5 we discuss the state-of-the-art and re-
lated work. In Section 4 we describe in detail how we plan
to realize our vision. Finally we draw a conclusion and give
an outlook to future work in Section 6.

2. SCENARIO AND PROBLEM
During modeling, engineers are prone to making mistakes.

State-of-the-art tool support can help to detect these mis-
takes and point to inconsistencies in the model. For exam-
ple, Figure 1 shows a simple UML model describing a Light

with a Switch containing three inconsistencies:

I1 A violated model constraint (C1 ) that states that the
Light class has to have at least two operations named
activate and deactivate.

I2 A violated meta-model constraint (C2 ) that states that
state-chart actions must be defined as an operation
in the owner’s class. In this case the owner of the
state-chart class is Light and Light has no activate

operation defined.

I3 A violated meta-model constraint (C3 ) that states that
collaboration message actions must be defined as an
operation in receiver’s class. In this case the receiver’s
class is Light which has no activate operation de-
fined.

Typical tool support for fixing these inconsistencies will only
look at each inconsistency individually and generate fixing
actions for each of them [4, 5, 8, 7]. Current state of the
art has produced interesting solutions for suggesting fixes to
inconsistencies. There is the pioneering work of Nentwich
et al. [8] that demonstrated how to generate fixing actions
for inconsistencies (one inconsistency at a time). They dis-
tinguished abstract and concrete fixes where abstract fixes

in essence identified the locations where to fix (e.g., change
the name of the turn-on method) and concrete actions in
addition identify how to fix that location (e.g., change the
name of the turn-on method to activate). However, the
fixing of inconsistencies also has side effects onto other de-
sign constraints: negative side effects if the fixing causes
new inconsistencies or positive side effects if the fixing of
an inconsistency also fixes other inconsistencies. While the
existence of these side effects has been widely published, to
date they have not been exploited much. Existing state of
the art, either attempts to minimize negative side effects (a
heuristic that is not at all guaranteed to be the right strat-
egy) or focuses only on visualizing them. If the goal is to
avoid negative side effects (i. e., avoid additional inconsis-
tencies) then possible fixes for the above model would be:

I1 The first inconsistency could be fixed by adding the op-
eration activate to the class Light (F1 ), or changing
its operation turn-on to activate (F2 ). Of course the
model constraint C1 could be changed to fit the model
(F3 ).

I2 The second inconsistency would also be fixed with fixes
F1 and F2. Additional fixes would be to change the
inconsistent action in the state-chart to turn-on (F4 )
or to deactivate (F5 ), or simply remove it (F6 ). And
again also the meta-model constraint C2 could be
changed (F7 ).

I3 The third inconsistency again could be fixed with fixes
F1 and F2. Additional fixes would be to change the
inconsistent message in the collaboration diagram to
turn-on (F8 ) or to deactivate (F9 ), or simply remove
it (F10 ). And of course the meta-model constraint C3
could be changed (F11 ).

Looking at these inconsistencies individually results in sev-
eral equally viable fixing actions. To choose one of those fix-
ing actions for each individual inconsistency automatically is
not reasonable as all are viable. Clearly, the decision on how
to fix an individual inconsistency should be made by the soft-
ware engineer. Since the example given is a fairly small and
comprehensible model, it should be no challenge for an engi-
neer to figure out that all inconsistencies can be resolved by
either choosing fixing action F1 or F2. In larger, more com-
plex models, such “ideal” fixing actions cannot be identified
manually as easily, and as a consequence automated support
is needed. Nonetheless, even the “ideal” fixing actions with
the least number of changes and/or the fewest negative side
effects are not necessarily the fixes the software engineers
intends. For example, if a model is fully consistent but a
requirement change requires a set of model changes, then
the first change likely causes inconsistencies because the set
of model changes are not yet finished. The fix with the least
number of changes and fewest negative side effects is then
often a simple undo to restore the initial, correct state – a
minimal, consistent solution, however, clearly an incorrect
one with respect to the intended requirements change.

Even though this paperfocuses on modeling with the UML
, we previously also investigated the concept of tolerating
conflicts in other domains. In [9] we discussed different fixing
strategies in the domain of decision-making and product-
line engineering especially. From our experiences in these
domains, the same basic principles discussed in this paper
are valid. If decision makers pick conflicting decisions, those
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Figure 2: Examples of different Interrelations be-

tween Inconsistencies

decisions are often involved in several related rule violations
in the decision model (symptoms).

3. VISION
As mentioned in the introduction, fixing inconsistencies

should not focus on fixing them individually because they
are only the symptoms of defects. Software modelers should
identify relationships among inconsistencies to reason about
the cause(s) (defects) for these inconsistencies.

Looking at a group of inconsistencies instead of a single
one provides more information about the defect and should
prove to be useful in reasoning about possible fixes: 1) by
reducing the number of possible fixes and thus more eas-
ily identifying the defect(s) at hand and 2) by understand-
ing how many defects are involved and what combination of
changes are necessary fix them. The latter aspect in particu-
lar is challenging because fixes for defects do not necessarily
involve single changes to a model but may require sets of
changes. While the set of changes is a subset of the changes
of the individual inconsistencies, the combinatorial explosion
in what combination of changes of the individual inconsis-
tencies to consider would be hard to decide manually. A
fixing action in this scenario thus involves all the changes to
fix the defect(s) involved and thus all its/their inconsisten-
cies. Depending on the number of inconsistencies that are
investigated at a time, this could mean a significant scalabil-
ity improvement when only searching for fixing actions with
a number of changes considerably smaller than the num-
ber of inconsistencies. In addition, the search for fixes that
involve single changes only, could be used to determine if
inconsistencies are related and if one or more defects caused
the inconsistencies under investigation respectively.

Figure 2 shows two sets of inconsistencies that are differ-
ent in terms of their relationships. An ellipse represents the
fixing actions of a single inconsistency which are depicted
as black dots. Fixing actions that are located in the over-
lapping areas of the ellipses are fixing actions shared among
several inconsistencies. These fixing actions could fix all in-
consistencies involved – however, it is not necessarily true
that there is a single concrete fix for every fixing action in
case the fixing action is abstract. On the left hand side of
Figure 2, a scenario with three inconsistencies and an over-
lap among all of them is shown. In this case, there exist
two possible fixing actions to resolve all three inconsisten-
cies (overlap among all three ellipses). This implies that
those inconsistencies are related, however it does not nec-
essarily imply that these fixes are indeed the only correct

Figure 3: Overview of Fixes for the Example from

Figure 1

fixes the software engineer should consider. In other words
the cause for those three inconsistencies is possibly a single
defect in which case one of the two fixing actions must be
taken. However, if multiple defects cause the inconsistencies
then other combinations of fixing actions are also possible.
On the right hand side a different scenario is shown. We can
see that both I1 and I2 are related to I3 but they are in no
relation to each other. In this scenario it is safe to say that
there are at least two defects as there exists no single fixing
action that could resolve all three inconsistencies at hand.

In the example described in Section 2, all three described
inconsistencies are related, they all can be fixed by either
choosing fixing actions F1 or F2 as is apparent in Figure 3
(assuming the constraints are correct and therefore fixes F3,
F7, and F11 are irrelevant and grayed out). In this exam-
ple, we even have the special situation that fixing I1 in any
case resolves all three inconsistencies. Additionally if the de-
signer decides that there are multiple defects, the number of
combined fixing actions is reduced by the fact that F1 and
F2 respectively always have to be part of the solution. Fur-
thermore, choosing F2 to change the operation name from
turn-on to activate in the class Light, excludes fixes F4
and F8 as they would require the operation turn-on to be
present in the class Light.

To summarize we think that calculating fixes for more
than one inconsistency at a time, especially if they are in-
terrelated, is highly beneficial. Possible positive effects are:

1. A reduction in the number of possible fixing actions,
through reasoning with more facts in the knowledge
base (notice that knowledge about relationships among
inconsistencies reduces the number of fixing actions).

2. As a consequence an increase in scalability since the
calculation can be cut-off as soon as a combined solu-
tion is not achievable any more.

3. More precise fixing actions since the impact of the
changes onto a larger amount of model elements is al-
ready considered.

4. Supporting designers by unburden them of having to
know about interrelations when choosing a fixing ac-
tion.

4. PROPOSED APPROACH
We propose to realize our vision stepwise. First of all we

will use the choice generation technique described by Egyed
et. al. [5] to better characterize fixes for individual incon-
sistencies (i. e., to compute concrete fixes for given abstract
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fixes). As a second step, we will investigate overlaps among
inconsistencies. Initially, we will require the software engi-
neer to identify relationships among inconsistencies; how-
ever, we will also develop heuristics to help the engineer.
Questions we plan to answer are:

• How often occur interrelated inconsistencies in real
world examples?

• How many choices for fixing an inconsistency can be
excluded considering these interrelations? How strong
is this reduction?

• Can abstract fixes become constrained fixes (con-
strained fixes being abstract fixes with some restric-
tions, for example the location is known and some pos-
sibilities of how to fix the inconsistency at that location
have been excluded) or constrained fixes concrete fixes
respectively? If yes, how often does this happen?

If the above mentioned qualitative aspects prove to be use-
ful, as a next step we plan to investigate how the choice
generation can be improved and sped up by considering the
interplay among related inconsistencies already during the
choice generation. For that we will rely on concepts and
algorithms from CSPs (Constrained Satisfaction Problems).
We also think some sort of grouping of actions the user can
take will be necessary to reduce the amount of information
we have to deal with. This grouping for example could be ac-
cording to the effect on other inconsistencies or consistency
rules in general.

As a final step we are planning to automatically deter-
mine which inconsistencies are related. On the one hand for
certain consistency rules it could easily be defined on the
meta-level, on the other hand for situational and not so ob-
vious relations an online determination could be necessary.
Online meaning in this case that the determination would
occur while engineers are using the modeling tool. Our basic
idea for this task until now is:

1. Get all model elements of one inconsistency that are
involved during the evaluation of the consistency rule.

2. Look for other inconsistencies that share model ele-
ments with the one under investigation and repeat this
step for those inconsistencies.

3. Do a pairwise search for fixes with a cardinality of one.
If there are none handle those inconsistencies as none-
related. If there are fixes search for overlaps with other
pairwise search results to form inconsistency clusters.

Additionally we want to incorporate the concept of trust into
our reasoning, this concept was already described in [9]. The
concept basically states that some pieces of information ob-
served through user behavior can be trusted. Such pieces
of information are not evident from the model itself. An
example would be that design decisions that introduce an
inconsistency and are not undone must be important to the
user and therefore can be assumed to be correct. Of course
this assumption could only hold if it would be apparent
to the user that an inconsistency was just created through
tool support like instant consistency checking as described
in [3]. This sort of trust would for example benefit engi-
neers in including new requirements into consistent models.
As already mentioned the first change of a series of model

changes could cause several inconsistencies. Even with con-
sidering all those inconsistencies while searching for fixes the
result will probably be an undo, since it is the simplest fix.
However combined with trusting this first change the search
would continue and hopefully come up with changes that
are required by the requirements change anyway.

5. RELATED WORK
The problem of resolving inconsistencies has received con-

siderable attention in the last two centuries. In this section
we give a brief overview of work that has been done in this
research area. On the one hand, in order to resolve incon-
sistencies, they have to be detected and tolerated. Almost
20 years ago, Balzer argued that inconsistencies should be
detected and communicated to the developers; however, de-
velopers should not be hindered in continuing their work
despite the presence of inconsistencies [1]. However at some
point those inconsistencies have to be resolved, preferably
with the support of automated techniques.

First off all, to resolve inconsistencies they have to be de-
tected. However the knowledge if the whole model or a sin-
gle constraint is consistent, is not enough to produce fixes.
As Nentwich et. al. for example stated in [7], it is impor-
tant that trace links from the inconsistency to the model
element(s) in question exist. In their work they propose
to use first-order logic to express consistency rules and are
able to provide trace links between inconsistent elements.
Performance also is an issue when checking for consistency
and approaches like the incremental consistency checking
approach by A. Egyed [3] addresses this issue.

For generating fixing or repair actions several approaches
exist. On the one hand, Xiong et. al. propose writing ad-
ditional “fixing procedures” for each constraint, in order to
produce fixes when needed [11]. On the other hand Nen-
twich et. al. describe in their work [8] a method for gener-
ating interactive repairs from first order logic formulae - the
same formulae that they already used to detect inconsisten-
cies [7]. Another approach described by Egyed et. al. in
their paper [5] shows how to generate choices for fixing an
inconsistency without having to understand such formulae
which can be complex in case conistency rules are written
in programming languages. These approaches look at other
model elements already defined in the model and use them
as choices. This generated choices are then reduced by look-
ing at the impact of each choice [4, 2] and removing those
that would cause additional inconsistencies.

Despite the considerable progress on research for fixing
inconsistencies, to the best of our knowledge no approach
looks at more than one inconsistency at a time. However
the need for a more “global” approach during consistency
checking itself is demonstrated by Sabetzadeh et. al. in [10]
but not used for fixing yet. Additionally Nentwich et. al.
already stated in their work [8], that one of the biggest chal-
lenges is not to look at one single inconsistency but to look
at inconsistencies from a more “global” point of view. This
notion is also in accordance with our vision that a more
“global” view should be beneficial for fixing inconsistencies.

6. CONCLUSIONS AND FUTURE WORK
In this work, we presented our vision of the next steps in

inconsistency resolving, namely to not look at them individ-
ually but in clusters of related inconsistencies. We described
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the potential we think this approach can have for resolving
inconsistencies and hope that we can substantiate it in the
near future. As a result we hope we can further improve the
user guidance during modeling. Once we have evaluated and
validated the qualitative properties of searching for fixes for
several inconsistencies at once, we are planning to explore
the scalability properties.

Open questions that also would be interesting to inves-
tigate are: Are there different relationships between incon-
sistencies? Can more conceptual parallels be found to the
compiler community and used? To what degree can cluster-
ing algorithms be applied? From a user guidance point of
view it would be interesting to investigate how important
qualitative aspects can be utilized. For example if the user
tells the system that certain inconsistencies are related, but
no common fix can be found. As stated before this would
imply that those inconsistencies are not related. How is this
piece of information useful to the user and can it be used to
guide the user to a satisfying solution?
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