Inconsistency Detection in Distributed
Model Driven
Software Engineering Environments

The single-view inconsistency detection method

UPMC

AAAM PARIS

DGA

INSTITUT NATIONA

DE RECH
EN INFORMATIQUE
N AUTOM

IINRIA\

LE - NORO EUROPE

Presented by Alix Mougenot ‘@ OIS \

RoadMap

® Context definition

® Problems regarding global inconsistency
detection

® Single-view inconsistency detection

Context

Inconsistency detection within Models:

* Model: Attributed Graph of model elements

Server

+ run()

Class Operation
O OwnedOperation)O

name = “server” visibility = public
name = “run”

* |nconsistency: Set of model elements that matches

an inconsistency rule.

Couple (model elements, inconsistency rule)

Context

Multiview model editing

e View: Model that is a sub-model of the Global Model

View

Global Model

View View

Problem

Today: Inconsistencies are detected on the
global model.

Problem |:That does not respect the
separation of concerns principle.

Problem 2:The Global Model may not be
available.

Problem |

Respecting the separation of concerns

* Global inconsistency detection can be confusing:
Why would a user from a particular view be interested
in inconsistencies he/she can’t resolve?

* Global inconsistency detection can be wasteful:
Global consistency is harder to compute than one view
plus it's overlapping elements.

Problem 2

Distributed Views: Clarification

- .
_ \ . / _ Versioning systems are used for
8 _——M_ Collaborative editing not so

much for Distributed editing.

/ SVN

\ >
>

-~
\

Problem 2

Distributed Views: Clarification

Problem 2

Distributed Views: Clarification
W | @

S

~

Problem 2

Distributed Views: Running example

Inconsistency rule: Cycles for the relation owned element are forbidden.

N
7
\/\/

Problem 2

Distributed Views: Running example

Inconsistency rule: Cycles for the relation owned element are forbidden.

N
7
\/\/

Proposal

Single-View inconsistency detection

e Check fitted to one view

e Check that is fitted to one particular inconsistency rule

e Check for elements that are related to the considered view

10

Proposal

Single-View inconsistency detection

T
C/)o
\/

e Check fitted to one view

e Check that is fitted to one particular inconsistency rule

e Check for elements that are related to the considered view

10

Proposal

Single-View inconsistency detection

T
7

N

e Check that is fitted to one particular inconsistency rule

e Check fitted to one view

e Check for elements that are related to the considered view

10

Proposal

Single-View inconsistency detection

T
7
N~

e Check fitted to one view

e Check that is fitted to one particular inconsistency rule

e Check for elements that are related to the considered view

10

How did we make it ?

We used Praxis to represent models, DPraxis for
implementing the distributed views.

(1) We used the Praxis Rules Impact Analysis to filter the
data that is specific to an inconsistency rule.

(2) We used the DPraxis’ routing tables to filter and obtain
the data that is related to the view.

11

Context:Praxis

(Six unitary actions to represent models:
Create Delete
AddProperty RemProperty
AddReference RemReference
\
Server
(,

send(in msQ)

X. Blanc, I. Mounier, A. Mougenot, and T. Mens, "Detecting model inconsistency through operation-Based model construction," Proceedings of the 30th international conference on Software engineering ,

ICSE '08, New York: ACM Press, 2008, p. 511.

1.Create(c1,class)
2.AddProperty(cl,name,Server)
3.Create(op, operation)
4.AddProperty(op, name, send)
5.AddReference(cl, ownedOperation,op)
6.AddReference(cl, ownedElement,op)
7.Create(p,parameter)
8.AddProperty(p,direction, in)
9.AddProperty(p,name, message)
10.AddReference(op,ownedParameter,p)
11.AddReference(op,ownedElement,p)
12.RemProperty(p,name,message)
13.AddProperty(p,name, msg)

12

Context:DPraxis

We believe that P2P can tackle modeling scaling issues
by providing only the needed information to each developer.
DPraxis then shares the common subparts.

Client

+name : String

AN

TrustedClient

Server

+runService()

Client

+name : String

TrustedClient

<]_

View V1

Client

+name : String

Server

+runService()

GlobalModel View V2

A. Mougenot, X. Blanc, and M. Gervais, "D-Praxis : A Peer-to-Peer Collaborative Model Editing Framework," Proceedings of the 9th IFIP international conference on Distributed Applications and
Interoperable Systems, DAIS'09,2009, pp. 16-29.

Context:DPraxis

We believe that P2P can tackle modeling scaling issues
by providing only the needed information to each developer.
DPraxis then shares the common subparts.

Client Server Client TrustedClient

+name : String +name : String <}— Site I

+runService()

JAN View V1

Client Server
TrustedClient

+name : String

+runService()

GlobalModel View V2

A. Mougenot, X. Blanc, and M. Gervais, "D-Praxis : A Peer-to-Peer Collaborative Model Editing Framework," Proceedings of the 9th IFIP international conference on Distributed Applications and
Interoperable Systems, DAIS'09,2009, pp. 16-29.

13

Context:DPraxis

We believe that P2P can tackle modeling scaling issues
by providing only the needed information to each developer.
DPraxis then shares the common subparts.

Client Server Client TrustedClient

+name : String +name : String Q— Site I

+runService()

o View V1
TrustedClient _ r::fg:ring Server
| +runService() Site 2
GlobalModel View V2

A. Mougenot, X. Blanc, and M. Gervais, "D-Praxis : A Peer-to-Peer Collaborative Model Editing Framework," Proceedings of the 9th IFIP international conference on Distributed Applications and
Interoperable Systems, DAIS'09,2009, pp. 16-29.

13

Context:DPraxis

We believe that P2P can tackle modeling scaling issues
by providing only the needed information to each developer.
DPraxis then shares the common subparts.

-
Client Server Client TrustedClient
+name : String +name : String K :]— S|te I
+runService()
ZAN View V1
Client Server
TrustedClient +name - Sting

+runService() Slte 2

GlobalModel view V2

A. Mougenot, X. Blanc, and M. Gervais, "D-Praxis : A Peer-to-Peer Collaborative Model Editing Framework," Proceedings of the 9th IFIP international conference on Distributed Applications and
Interoperable Systems, DAIS'09,2009, pp. 16-29.

13

Context:DPraxis

We believe that P2P can tackle modeling scaling issues
by providing only the needed information to each developer.
DPraxis then shares the common subparts.

Client TrustedClient

+name : String K :]— Site I

| View V1

Client Server

+name : String .
+runService() Slte 2
GlobalMod®! || View V2

A. Mougenot, X. Blanc, and M. Gervais, "D-Praxis : A Peer-to-Peer Collaborative Model Editing Framework," Proceedings of the 9th IFIP international conference on Distributed Applications and
Interoperable Systems, DAIS'09,2009, pp. 16-29.

13

Filtering with
Praxis Rules Impact Analysis

Praxis Rule

s

-

Cycle(A) :- Path(A,A)

Path(A,B) :-
LastAddReference(A,ownedElement,B) or
Path(A,X) and Path(X,B)

Unitary actions classes that have an
impact on the rule Cycle

AddReference(,ownedElement,)
RemReference(,ownedElement,)

X. Blanc, A. Mougenot, I. Mounier, and T. Mens, "Incremental Detection of Model Inconsistencies based on Model Operations," Proceedings of the 21st International Conference on Advanced Information
Systems, CAISE'09, Berlin: Springer, 2009, pp. 32-46.

14

Determining the Jump points

Jump point
Jump point: Model element that is
replicated and that owns at least one
reference that can be crossed by the Jump point
considered inconsistency rule. C/)

1\ J
O
lgnored N
jump point r /

<

e \We use DPraxis to get the list of replicated elements.

e \We use the impact analysis to find if there are any references for these elements that can be
crossed by the inconsistency rule.

15

Single-View Inconsistency detection

4

e Determine the Jump Points
® For each each view that owns a replica of a Jump point:

e A request for the interesting unitary actions is made by asking for a closure over the considered
relations and elements.

e A recursive call is possible when a new Jump Point is hit.

e An inconsistency detection is executed on the local view plus the gathered elements.

16

Single-View Inconsistency detection

e Determine the Jump Points
® For each each view that owns a replica of a Jump point:

e A request for the interesting unitary actions is made by asking for a closure over the considered
relations and elements.

e A recursive call is possible when a new Jump Point is hit.

e An inconsistency detection is executed on the local view plus the gathered elements.

16

Single-View Inconsistency detection

4

e Determine the Jump Points
® For each each view that owns a replica of a Jump point:

e A request for the interesting unitary actions is made by asking for a closure over the considered
relations and elements.

e A recursive call is possible when a new Jump Point is hit.

e An inconsistency detection is executed on the local view plus the gathered elements.

16

Single-View Inconsistency detection

4

e Determine the Jump Points
® For each each view that owns a replica of a Jump point:

e A request for the interesting unitary actions is made by asking for a closure over the considered
relations and elements.

e A recursive call is possible when a new Jump Point is hit.

e An inconsistency detection is executed on the local view plus the gathered elements.

16

Single-View Inconsistency detection

=" </

e Determine the Jump Points
® For each each view that owns a replica of a Jump point:

e A request for the interesting unitary actions is made by asking for a closure over the considered
relations and elements.

e A recursive call is possible when a new Jump Point is hit.

e An inconsistency detection is executed on the local view plus the gathered elements.

16

Single-View Inconsistency detection

7

4

e Determine the Jump Points
® For each each view that owns a replica of a Jump point:

e A request for the interesting unitary actions is made by asking for a closure over the considered
relations and elements.

e A recursive call is possible when a new Jump Point is hit.

e An inconsistency detection is executed on the local view plus the gathered elements.

16

Single-View Inconsistency detection

4

e Determine the Jump Points
® For each each view that owns a replica of a Jump point:

e A request for the interesting unitary actions is made by asking for a closure over the considered
relations and elements.

e A recursive call is possible when a new Jump Point is hit.

e An inconsistency detection is executed on the local view plus the gathered elements.

16

Single-View Inconsistency detection

4

e Determine the Jump Points
® For each each view that owns a replica of a Jump point:

e A request for the interesting unitary actions is made by asking for a closure over the considered
relations and elements.

e A recursive call is possible when a new Jump Point is hit.

e An inconsistency detection is executed on the local view plus the gathered elements.

16

Single-View Inconsistency detection

4

e Determine the Jump Points
® For each each view that owns a replica of a Jump point:

e A request for the interesting unitary actions is made by asking for a closure over the considered
relations and elements.

e A recursive call is possible when a new Jump Point is hit.

e An inconsistency detection is executed on the local view plus the gathered elements.

16

B P QB 4
! Prope | (3 Projec |y Praxis &2 e,
Praxis P2P

v Connectivity

Disactivate peer-to-peer network (9

Create a new group _G'roupName

~ Members of my group

You are not member of any group yet

~ Group List

~ Peers List

Ping the peers list
- me (192.168.2.28:60001)

- d83d1(127.0.0.1:60002)

Video Demo

Resource - Eclipse Platform

5= Outline | ! Console | € Error Log © Progress | Y- Consistency 3

=

(o]

& Artifact C...

17

